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t A shared vo
abulary between humans androbots for des
ribing spatial 
on
epts is essential for ef-fe
tive human robot intera
tion. Towards this goal, wepresent a novel te
hnique for pla
e 
ategorization fromvisual 
ues 
alled PLISS (Pla
e Labeling through ImageSequen
e Segmentation). PLISS is di�erent from exist-ing pla
e 
ategorization systems in two major ways -it inherently works on video and image streams ratherthan single images, and it 
an dete
t �unknown� pla
elabels, i.e. pla
e 
ategories that it does not know about.PLISS uses 
hangepoint dete
tion to temporally seg-ment image sequen
es whi
h are subsequently labeled.Changepoint dete
tion and labeling are performed in-side a systemati
 probabilisti
 framework. Unknown pla
elabels are dete
ted by using a probabilisti
 
lassi�er andkeeping tra
k of its label un
ertainty. We present ex-periments and 
omparisons on the large and extensiveVPC dataset. We also demonstrate results using modelslearned from images downloaded from Google's imagesear
h.1 Introdu
tionPla
e 
ategorization is the problem of tagging pla
eswith semanti
ally meaningful labels. As opposed to pla
ere
ognition, whi
h deals with the task of 
onsistentlyidentifying a spe
i�
 pla
e every time it is visited andis useful in roboti
 mapping, 
ategorization deals withhigher-level knowledge and semanti
 mapping. Someexamples of 
ategories are �Kit
hen�, �
orridor�, �Li-brary�, and �Fast food joint�. As is immediately evi-dent, pla
e 
ategorization is dependent on the task athand and the resolution of semanti
 knowledge requiredHonda Resear
h Institute USA, In


sin
e there 
an be multiple labels at di�erent spatiallevels appli
able to the same pla
e. Pla
e 
ategoriza-tion is essential in order for a robot or an intelligentagent to semanti
ally understand pla
es in a mannersimilar to that done by people. It is also useful, if nota requirement, for semanti
 mapping and 
an provide
ontextual 
ues for many problems in 
omputer vision.For instan
e, the label of a pla
e pla
es a strong prioron the types of obje
ts found there [41℄.Most existing pla
e re
ognition systems are 
lassi�erbased, and assume a �nite set of pla
e labels whi
h arelearned o�ine from supervised training data. The sys-tem may learn a one-vs-all 
lassi�er or a separate binary
lassi�er for ea
h label. The 
lassi�er then 
ategorizesinput images sequentially during runtime. The advan-tage of these systems is simpli
ity and the availabilityof o�-the-shelf 
omponents su
h as Support Ve
tor Ma-
hines (SVMs) [37℄.However, systems based on straight-forward appli-
ation of 
lassi�ers also have a few signi�
ant disadvan-tages. Firstly, 
lassi�
ation is performed independentlyfor ea
h input image even though the robot is physi
ally
onstrained to only move from one pla
e to anotherinfrequently so that there is a strong 
ontinuity biasin the pla
e label. Dis
riminative 
lassi�ers 
annot, inmost 
ases, take advantage of this information thoughit 
an be modeled generatively [53℄. Instead, output la-bel 
ontinuity is externally enfor
ed through methodssu
h as Bayesian �ltering [46℄. Se
ondly, sin
e 
lassi-�ers, parti
ularly dis
riminative ones, are 
onstrainedto only provide labels from the known label set, thesesystems 
annot �ag a pla
e 
ategory that has not beenpreviously en
ountered. This inability to signal an �un-known� label results in in
orre
t output and poor per-forman
e.
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Fig. 1: Maximum likelihood output labeling for the 1st �oor image sequen
e from Home 3 of the VPC dataset, whi
h is one of themore di�
ult ones and 
ontains 6839 images. Thumbnails (in the shape of thin �strips�) of original images, groundtruth labeling andthe PLISS result are shown. Note that it is possible to spot many of the 
hangepoints from just the high-level image 
hara
teristi
svisible here but not all of them.In this paper, we present a novel system for pla
e
ategorization 
alled PLISS, whi
h stands for Pla
e La-beling through Image Sequen
e Segmentation. PLISS isbased on the observation that the pla
e label does not
hange at every measurement and works by temporallysegmenting image sequen
es into segments 
orrespond-ing to di�erent pla
e 
ategories. We use 
hangepointdete
tion for temporal segmentation. Changepoint de-te
tion, as it's name suggests, is the problem of de-te
ting instants in time when the measurement model
hara
teristi
s undergo signi�
ant 
hanges. If the mod-eling is performed in su
h a manner as to make these
hanges 
orrespond to the robot entering and exitingpla
es, we 
an obtain a segmentation where ea
h seg-ment 
orresponds to a pla
e 
ategory. This providesa natural way of approa
hing the pla
e 
ategorizationproblem and yields smooth output without the need foradditional �ltering of the result.It may be argued that a weakness of this methodis it's dependen
e on a good temporal segmentation.We address this issue by performing robust segmenta-tion through 
hangepoint dete
tion within a Bayesianprobabilisti
 framework whi
h systemati
ally takes allpossible segmentations into a

ount at ea
h time stepand 
omputes a posterior distribution over temporalsegmentations. This is done in an online manner so asto be of pra
ti
al use, i.e. we do not need the 
ompleteimage sequen
e for the 
hangepoint inferen
e. More-over, unlike most 
ases involving Bayesian inferen
eover 
omplex spa
es, this inferen
e 
an be performedexa
tly and e�
iently to obtain near real-time perfor-man
e. We also present a parti
le �lter approximationto the exa
t algorithm that further improves e�
ien
ywithout 
ompromising on performan
e. The temporalsegments are labeled using pla
e models learned o�ineusing training data. We use a Gaussian Pro
ess 
lassi-

�er (GPC) [33℄ for this purpose sin
e this also provides
lassi�
ation un
ertainty at the query point. We usethis un
ertainty to �ag the 
ase of unknown labels in asystemati
 manner. We demonstrate that this providesa s
alable te
hnique for handling the unknown labelproblem.Hen
e, PLISS elegantly over
omes the disadvantagesof dis
riminative 
lassi�er based systems mentioned above,i.e.1. PLISS is temporally 
onsistent: Sin
e PLISS is basedon labeling segments of image sequen
es obtainedusing 
hangepoint dete
tion, it is inherently tem-porally 
onsistent without the need for additional�ltering or smoothing methods. Further, the 
hange-point dete
tion itself performed in a systemati
 man-ner like than in an ad-ho
 manner.2. PLISS handles the unknown label problem: PLISSis not 
onstrained to 
lassify the input into the pre-determined pla
e 
ategory set and 
an dete
t s
e-narios where the pla
e 
ategory is unknownWhile a few existing generative methods also have thetwo advantages mentioned above, PLISS is also 
om-putationally e�
ient and 
an operate very 
lose to realtime in pra
ti
al s
enarios, as we demonstrate in ourexperiments.We model images using histograms of dense SIFTfeatures. The image histograms are used as measure-ments in the 
hangepoint dete
tion pro
edure whereinwe use the Multivariate Polya distribution as the mea-surement model. The multivariate Polya distribution,also known as the Diri
hlet Compound Multinomial(DCM) model [25℄, is a bag-of-words model previouslyused for do
ument modeling. It 
aptures burstiness ofthe data, i.e. it models the observation that if a wordo

urs on
e in a do
ument, it usually o

urs repeatedly.Unfortunately, the DCM model 
annot be updated in-
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rementally, and hen
e we provide an e�
ient Gaus-sian approximation based on proje
ting the high di-mensional DCM model into a low dimensional spa
e.The image histograms are also used to learn the GPCpla
e models.We present extensive experiments for validating PLISSon the Visual Pla
e Categorization (VPC) dataset [46℄,a large and 
hallenging dataset 
olle
ted from multi-ple home environments. The labeling result from PLISSon one of the sequen
es of the VPC dataset is shownin Figure 1. We also present results using pla
e mod-els learned from images obtained from Google's imagesear
h using the pla
e label as the keyword, the ad-vantage being that no knowledge of the operational en-vironment is ne
essary during training. This problemrepresents a higher level of di�
ulty than learning pla
emodels from similar environments, and provides a bigstep towards the pra
ti
al use of pla
e 
ategorization.We present 
omparisons against other algorithms andruntime results for PLISS.The major di�eren
e between this work and ourprior work on PLISS [31℄ is that we no longer use Mul-tivariate Polya models for both 
hangepoint dete
tionand pla
e modeling. Instead, pla
e modeling is per-formed using a Gaussian Pro
ess 
lassi�er (GPC) andwe utilize the un
ertainty estimate provided by the GPCfor dete
ting the unknown label 
ase. The advantageis in
reased 
lassi�
ation performan
e and s
alabilitywith number of pla
e labels. This is so be
ause theMultivariate Polya model is more suited for 
luster-ing rather than 
lassi�
ation and does not generalizewell when 
lass overlap is present. In addition, our newte
hnique for dete
ting the unknown label 
ase is mu
hsimpler, faster, and s
ales better than statisti
al hy-pothesis testing based on the Multivariate Polya model,whi
h we used previously. We also present a more e�-
ient approximation to the 
hangepoint dete
tion pro-
edure based on proje
ting down the high dimensionalMultivariate Polya measurement model to a low dimen-sional subspa
e. Finally, we present signi�
antly moreexperiments and 
omparisons on 
hallenging datasets,in
luding results from learning pla
e models on imagesobtained from web sear
hes.2 Related WorkPla
e 
ategorization has re
eived extensive attentionboth in roboti
s and 
omputer vision. In roboti
s, pla
ere
ognition and 
lassi�
ation fall under the more gen-eral areas of spatial reasoning [20℄ and semanti
 map-ping for robots [49℄. They also fa
ilitate human-robot
ommuni
ation [40℄. Early work on pla
e re
ognitionwas 
on�ned to re
ognizing spe
i�
 pla
es rather than


ategories. Typi
al approa
hes in
lude mat
hing SIFTfeatures a
ross images [51℄ or mat
hing other derivedmeasures of distin
tiveness for pla
es su
h as Fouriersignatures [24℄, subspa
e representations [15℄, and 
olorhistograms [43℄. These methods have the disadvantageof not being able to generalize and also need to use om-nidire
tional 
ameras to a
hieve invarian
e to perspe
-tive. Approa
hes that generalize well usually learn 
las-si�ers, involving SVMs or boosting, for ea
h pla
e fromlabeled data [35,39℄. A very re
ent system by Prono-bis et al. [30℄ fo
usses on merging 
ues from di�erentsensing modalities, the output for ea
h of whi
h is ob-tained from individually trained SVMs. In 
ontrast toPLISS, these and similar dis
riminative 
lassi�er-basedapproa
hes 
annot dete
t or learn unknown pla
es andpla
e 
ategories.Generative methods, of whi
h ours is an instan
e,
an in prin
iple dete
t unknown 
ategories using out-lier dete
tion. Outlier dete
tion has been used in [53℄,where it is 
alled a bail-out test. Our previous work[31℄, whi
h used hypothesis testing for dete
ting new
ategories, is similar in �avor to that work. However,in the 
urrent paper, we use Gaussian Pro
ess 
lassi-�ers for dete
ting outliers thus eliminating the need forhypothesis testing.While so far we have dis
ussed only the use of �l-tering as a way to impose the temporal 
ontinuity 
on-straint, a number of other two-tier methods are pos-sible. For instan
e, in Posner et. al [54℄, a 
lusteringmethod is used to 
reate these 
onstraints, whi
h arenot only temporal in this 
ase but 
an also link tem-porally non-sequential frames. Similarly, segmenting aspa
e into regions based on domain-spe
i�
 
ues su
h asdoors [30℄, 
an also 
onsidered to be a domain spe
i�
version of 
hangepoint dete
tion.Pla
e 
lassi�
ation methods based on laser and sonarrange s
ans also exist. Kuipers and Beeson [19℄ apply a
lustering algorithm to the laser s
ans to identify dis-tin
tive pla
es while Mozos et al. 
ombine features ex-tra
ted from laser s
ans and 
amera images[26℄ to learnboosted 
lassi�ers for pla
e 
ategories. Posner et. al[53℄ use a Chow-Liu tree model for modeling individualpat
hes. The individual pat
h likelihoods are integratedwithin a spatio-temporal MRF on image superpixels.In 
omputer vision, pla
e 
lassi�
ation is also knownas s
ene 
lassi�
ation and image 
ategorization. Twobroad methods 
an be dis
erned - those that modello
al features [2℄, obje
ts[32℄, and distin
tive parts ofimages[38℄, and those that extra
t global representa-tions of images and learn from them. The latter is 
loserto this work and hen
e, merits 
loser attention.Spatial Pyramid Mat
hing [21℄ introdu
ed the useof histograms of dense SIFT features 
omputed at var-
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ales for representing images. We utilizethe same image representation in this work. These his-tograms are used to learn SVM 
lassi�ers whi
h in-
orporate the histogram interse
tion kernel [17℄. Wuand Rehg [47℄ model images using quantized histogramsof 
ensus transform values. They term this the CEN-TRIST representation and use these to learn SVM 
las-si�ers for pla
e 
ategories in their Visual Pla
e Catego-rization (VPC) system. Other global methods in
ludeBos
h et al. [3℄, who learn a random forest 
lassi�er foridentifying pla
e 
ategories. The input to the 
lassi�eris dense SIFT features. Oliva and Torralba [28℄ intro-du
ed the gist of an image as a global feature for pla
e
ategorization. Gists are essentially histograms of imagegradients 
omputed a
ross the entire image. Fei-fei andPerona [14℄ introdu
ed a bag-of-words Bayesian gen-erative model based on Probabilisti
 Latent Semanti
Analysis (PLSA) for re
ognizing s
ene 
ategories. How-ever, the SVM-based systems mentioned above havesin
e outperformed this system.Pla
e 
ategorization, in the form of image 
lassi�-
ation, is also an essential 
omponent of 
ontent-basedimage retrieval. However, due to large image databasesand the need for fast retrieval, te
hniques thus far havebeen limited to 
olor and texture 
orrelograms, andsimilar simpler features [9℄. Many hashing te
hniquessu
h as Semanti
 hashing [36℄ and Spe
tral hashing [44℄have been used for this purpose though they are not di-re
tly appli
able to our s
enario sin
e supervised learn-ing for pla
e labels is not possible in these algorithms.Changepoint dete
tion has a long history in statis-ti
s and the best-known te
hnique is the CUSUM dete
-tor [29℄ whi
h involves modeling the time series as pie
e-wise segments of Gaussian mean with noise. Closer toour appli
ation is segmented regression [11℄. In our ex-position, we 
losely follow the more general method of[1℄ whi
h is appli
able to 
onjugate-exponential mod-els. The parti
le �lter algorithm we have presented isalso similar to [13℄ though a version that does not in-volve Rao-Bla
kwellization (and hen
e is less e�
ient)was presented in [7℄ �rst. Appli
ations of 
hangepointdete
tion in 
omputer vision range from video segmen-tation [50℄ to robust visual tra
king [42℄ to visual s
eneanalysis [5℄, though this is the �rst appli
ation to pla
e
ategorization to our knowledge.3 Problem SetupWe formulate the pla
e re
ognition problem as follows.We are given a measurement stream with measurementsat some (possibly 
hanging) intervals, whi
h we willalso 
all as timesteps. For ea
h measurement, we arerequired to 
ome up with a label 
orresponding to the

(a)
(b)
(
)Fig. 2: An explanation of how the 
hangepoint inferen
e isparametrized: (a) Hypotheti
al data divided into 3 segments (b)The value of the variable length ct used in our inferen
e as afun
tion of time. ct is the length of the 
urrent segment and re-sets to 0 when there is a 
hangepoint. (
) The trellis showing allthe possibilities over whi
h inferen
e is performed. Solid lines in-di
ate an in
rease in the length of the 
urrent segment (the 
aseof no 
hangepoint) while dotted lines indi
ate the possibility ofa 
hangepoint at that time instant. Figures taken from [1℄. Thehorizontal axis denotes time in all three �gures.type of the pla
e. The pla
e types are given in the formof L pla
e modelsM1,M2, . . . ,ML. We are also requiredto say if the measurement does not 
orrespond to anyof these labels.We approa
h the problem by noting that the pla
elabel remains the same for periods of time when a robotis moving inside a parti
ular pla
e. It only 
hanges spo-radi
ally when the robot travels into the next pla
e.Thus, the measurement stream 
an be segmented intopie
es 
orresponding to pla
es, i.e. measurements inea
h segment 
an be assumed to have been generatedby the 
orresponding pla
e model.We assume that a sequen
e of data y1, y2, . . . , yt 
anbe segmented into non-overlapping but adja
ent seg-ments. The boundaries between these segments are the
hangepoints. We deal with the model-based 
hange-point s
enario here, wherein the form of the probabil-ity distribution in ea
h segment remains the same andonly the parameter value 
hanges. We assume that thedata are i.i.d within ea
h segment and denote by ct the



PLISS: Labeling Pla
es Using Online Changepoint Dete
tion 5
(a) (b) (
)Fig. 3: Changepoint dete
tion: (a) Univariate Gaussian inputdata (blue/dashed) with segment means shown in bla
k (b)Groundtruth for 
hangepoints shown as length of segments, whi
his the variable ct used in our inferen
e. (
) Output of 
hange-point dete
tion whi
h is probability distribution on ct. Darkershades mean higher probabilities and the representation is sim-ply a shaded version of the trellis in Figure 2(
). The horizontalaxis in all the �gures denotes time while the verti
al axis in (b)and (
) denotes 
urrent segment length. The 
orresponding axisin (a) refers to magnitude of the measurements.length of the segment at timestep (or index) t. Notethat ct is also the timesteps sin
e the last 
hangepoint.If the 
urrent timestep is a 
hangepoint then ct = 0and if no 
hangepoints have o

urred yet then ct = t.While 
omputing the distribution over ct, we have to
onsider all the 
ases from ct = 0 (
hangepoint at 
ur-rent timestep), ct = 1 (
hangepoint at t − 1), and soon up to ct = t (no 
hangepoint so far). A illustra-tive explanation of the ct variable is shown in Figure2. A sample problem setup and output for 
hangepointdete
tion in the univariate Gaussian 
ase in shown inFigure 3.We denote the pla
e label at timestep t as xc

t . Thepla
e label is indexed by the 
urrent segment sin
e thewhole segment has a single label. However, this labelis updated with ea
h measurement, and hen
e the timeindex t is also used. The probability distribution over
xc

t is taken to be a dis
rete distribution of size L, onefor ea
h of the pla
e models. The 
ase where the pla
elabel takes none of these values is dete
ted separately.We need to 
ompute the joint posterior on ct and
xc

t given the data, p(ct, xc
t |y1:t), where y1:t denotes allthe data from timestep 1 to timestep t. The posterior
an be fa
tored as

p(ct, x
c
t |y1:t) = p(ct|y1:t)p(xc

t |ct, y1:t) (1)The �rst term is the posterior over the segment lengthwhile the se
ond term is the 
onditional posterior onthe pla
e label given the segment length. Note that theposterior over segment length is equivalent to inferringthe 
hangepoints sin
e ct = 0 implies a 
hangepoint.Inferen
e for the pla
e label need not be performed atea
h time step, espe
ially if the segment length is large,i.e. ct > C for some large C so that label inferen
efor the segment is likely to have stabilized. However,sin
e the label posterior is not guaranteed to remain

un
hanged even if this is the 
ase, we re
ommend peri-odi
ally 
omputing it even at this stage.We address 
hangepoint dete
tion, i.e. 
omputing
p(ct|y1:t) in the next se
tion. Computation of the pla
elabel posterior p(xc

t |ct, y1:t) is explained in Se
tion 6.4 Model-based Online 
hangepoint Dete
tionIn the following exposition, we 
losely follow [1℄ and[13℄, both of whi
h state essentially similar algorithmsbut with di�erent state representations. We representthe likelihood of the data in segment ct as p(yt|ξc
t ) where

ξc
t is a parameter set. The data inside ea
h segment areassumed to be i.i.d and the parameters are assumedi.i.d a

ording to a prior parameter distribution.The 
hangepoint posterior from (1) 
an be expandedusing Bayes law as
p(ct|y1:t) ∝ p(yt|ct, y1:t−1)p(ct|y1:t−1) (2)The �rst term is the data likelihood while the se
ondterm 
an be further expanded by marginalizing overthe segment length at the previous timestep to yield are
ursive formulation for ct
p(ct|y1:t−1) =

∑

ct−1

p(ct|ct−1)p(ct−1|y1:t−1) (3)where p(ct|ct−1) is the transition probability, p(ct−1|y1:t−1)is the posterior from the previous step, and we havemade use of the fa
t that c1, c2, . . . , ct form a Markov
hain.4.1 The Transition ProbabilityFor 
hara
terizing the transition probability p(ct|ct−1)in (3), we note that the only two possible out
omes are
ct = ct−1 +1 when there is no 
hangepoint at time step
t, and ct = 0 otherwise. Hen
e, this is a prior proba-bility on the �lifetime� of this parti
ular segment wherethe segment ends if a 
hangepoint o

urs. In survivalanalysis, su
h situations are routinely modeled usinga hazard fun
tion, whi
h represents the probability offailure in a unit time interval 
onditional on the fa
tthat failure has not already o

urred. If H(.) is a haz-ard fun
tion, the transition probability 
an be modeledas
p(ct|ct−1) =

{

H(ct−1 + 1) if ct = 0

1 −H(ct−1 + 1) if ct = ct−1 + 1
(4)In the spe
ial 
ase where the length of a segment ismodeled using an exponential distribution with times
ale λ, the probability of a 
hangepoint at every step
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onstant [13℄, so that H(t) = 1/λ and the transitionprobability is simply
p(ct|ct−1) =

{

1
λ

if ct = 0

1 − 1
λ

if ct = ct−1 + 1
(5)The justi�
ation for using a uniform prior on 
hange-points is that apriori we truly 
annot have any expe
-tations regarding the time spent by the robot in anyspe
i�
 pla
e. If the robot simply peeks into a pla
eand moves away, we get a very short interval between
hangepoints while the opposite 
ase where the robotstays in one pla
e for a very long interval is also quitepossible. A prior whi
h redu
es the 
han
es of a 
hange-point o

urring at a parti
ular time instant risks af-fe
ting the result if this expe
tation is invalid. Instead,by keeping a 
onstant 
hangepoint probability at ea
htimestep and letting the measurements de
ide the a
-tual 
hangepoint o

urren
e, we avoid su
h a risk.4.2 The Data LikelihoodThe data likelihood from (2) 
an be 
al
ulated only ifwe know the distribution parameter to use. Hen
e, weintegrate over the parameter value using the parameterprior

p(yt|ct, y1:t−1) =

�
ξc

p(yt|ξc)p(ξc|ct, yc
t−1) (6)where ξc is the model parameter for segment ct, and

yc
t−1 is the data from the 
urrent segment. The aboveintegral 
an be 
omputed in 
losed form if the twodistributions inside the integral are in the 
onjugate-exponential family of distributions. Expensive numeri-
al integrations have to be employed otherwise. In thefollowing exposition, we assume the 
onjugate 
ase.While we 
all (6) the likelihood of yt in keeping withour formulation of the problem, it is in a
tuality thepredi
tive posterior distribution of the 
urrent segmentsin
e the se
ond term inside the integral is the poste-rior distribution on parameters for the 
urrent segment.The intuition for our 
hangepoint dete
tion algorithm
an be seen from this relationship. If the predi
tive pos-terior for the 
urrent segment yields a low value for the
urrent measurement, it is likely that a 
hangepointhas o

urred. On the 
ontrary, if the predi
tion for ytis good, it implies a 
ontinuation of the same segmentand the same parameter regime.Now, further, let the integrated fun
tion from (6)be denoted as p(yt|ct, ηc

t ) where ηc
t parameterizes theintegrated predi
tive posterior. Even though this fun
-tion is usually not in the exponential family, it may bepossible to update it dire
tly using the su�
ient statis-ti
s of the data 
orresponding to the 
urrent segment

{yc
t−1, yt}, i.e. the integration need not be performedat every step. In the 
ase where t is a 
hangepoint, thefun
tion is 
omputed with prior values for η(0) (sin
e

ct = 0) instead of any su�
ient statisti
s.4.3 Computational CostThe algorithm des
ribed so far is exa
t. After n mea-surements, the possible segment lengths range from 0to n, and the posterior 
ontains the probability of allthese 
ases. Further, if the optimal 
hangepoint lo
a-tions are also needed, the posteriors from all timestepshave to be kept. Hen
e, the runtime and memory 
ostsper timestep are O(n) while the total memory 
ost is
O(n2). These requirements are in
ompatible with longterm online operation. A simple solution is to dis
ardsegments with probability less than some small num-ber ǫ from the posterior after ea
h step. This redu
esthe memory and runtime 
osts but does not addressthe worst-
ase s
enario wherein these 
osts remain thesame as before. Hen
e, we next provide a simple andintuitive parti
le �ltering approximation that exhibits
onstant runtime and O(n) total memory 
ost.4.4 Online operation using parti
le �lteringWe need the lo
ations of 
hangepoints and the exa
talgorithm above a

omplishes this by maintaining theposterior over segment lengths ct for all t. We nowapproximate the posterior using N weighted parti
les,thereby obtaining a 
onstant runtime algorithm.Combining (2), (3), and (4) we get the segmentlength posterior as
p(ct|y1:t) ∝

(

w
(0)
t

P

ct−1
H(ct−1 + 1)ρt−1 if ct = 0

w
(c)
t

P

ct−1
{1 − H(ct−1 + 1)} ρt−1 if ct = ct−1 + 1(7)where the parti
le �lter weights are given by

w
(c)
t = p(yt|ct, yc

t−1) (8)and, for the 
ase where t is a 
hangepoint and yc
t−1 isthe empty set, w(0)

t = p(yt|ct, η(0)), with η(0) being theprior parameter value of the integrated likelihood (6).
ρt−1 = p(ct−1|y1:t−1) is the posterior from the previoustimestep.Clearly, the posterior (7) is amenable to straight-forward use in a parti
le �lter with wt as the parti-
le weights. We use the optimal strati�ed resamplingmethod of [12℄ that ensures runtime and memory us-age proportional to the number of parti
les, i.e. O(1)with regard to number of measurements seen so far.The parti
le weights are given by (6).
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Fig. 4: The Spatial Pyramid histogram: Histograms of 
lusteredSIFT features, 
omputed on image regions at di�erent spatialresolutions, are 
on
atenated to yield the representation of theimage. The image regions are obtained by dividing it into su

es-sively �ner grids.Note that sin
e the likelihood parameters ξc in (6)are integrated out, this parti
le �lter is Rao-Bla
kwellized[4℄ and has lower varian
e than a standard parti
le �l-ter. This also makes the 
onvergen
e of the algorithmmore e�
ient.5 Changepoint dete
tion for video sequen
esWe model images using a �bag of words� model whereina histogram is used to represent the image. These his-tograms are also used as input measurements to thePLISS algorithm. First, in an o�ine phase, SIFT fea-tures are 
omputed on a dense grid on ea
h of a setof images. The features are ve
tor quantized using K-means to 
reate a 
odebook of pre-spe
i�ed size. Notethat it is not ne
essary in this step for the image setused to be similar to the test images, though betterresults are obtained if this is true.We 
ompute a spatial pyramid [21℄ from the quan-tized SIFT features and this is used as input to the
hangepoint dete
tion algorithm. The spatial pyramidis obtained by 
omputing histograms of feature frequen-
ies at various spatial resolutions a
ross the image. Thehistogram bins 
ontain the number of features in ea
hof the 
odebook 
lusters in the image region under 
on-sideration. Following [21℄, we obtain su

essive spatialresolutions by diving the image into a grid as shownin Figure 4. Note that only the histograms at the �nestresolution need to be 
omputed sin
e the 
oarser resolu-tion histograms 
an be obtained by simply adding theappropriate histograms at an immediately �ner level.All the histograms from the di�erent grids are then 
on-
atenated to yield the spatial pyramid representation.The two parameters for 
omputing the spatial pyra-mid are thus, the number of levels in the pyramid Vand the number of 
lusters 
omputed in SIFT spa
e(size of the di
tionary) K. SIFT features only have lo-
al information about an image pat
h while an imagehistogram only has global information. By 
ombining

Fig. 5: Graphi
al model illustrating the Multivariate Polya distri-bution. To obtain a measurement z, whi
h is a quantized featurehistogram, we �rst sample from a Diri
hlet distribution with pa-rameter α to obtain a Multinomial ve
tor θ . This Multinomialdistribution is, in turn, sampled to obtain the measurement his-togram y. Note that a di�erent θ has to be sampled for ea
h y.Ea
h α roughly 
orresponds to a pla
e 
ategory.both of these at di�erent s
ales, the spatial pyramidobtains more �ne-grained dis
riminative power.5.1 Multivariate Polya measurement modelA measurement model is required to 
ompute the mea-surement likelihood in (6). Sin
e the measurements arehistograms of word 
ounts, we model them using amultinomial distribution having dimensions equal tothe di
tionary size. Further the prior over the multi-nomial parameter is the Diri
hlet distribution, whi
his the 
onjugate prior and simpli�es the 
omputation.Given a histogram measurement yt, its likelihood a
-
ording to (6) is
P (yt|α, ct) =

�
θ

P (yt|θ)P (θ|α, ct) (9)where θ = [θ1, θ2, . . . , θW ] and α = [α1, α2, . . . , αW ] arethe multinomial parameter and Diri
hlet prior respe
-tively, and W is the di
tionary size. Assuming that thehistogram yt has bin 
ounts given by [n1, n2, . . . , nW ],the distributions in the integrand above 
an be writtenas
p(yt|θ) =

n!

n1!n2! . . . nW !
θn1
1 θn2

2 . . . θnW

W (10)
p(θ|α, ct) =

Γ (
∑W

w=1 αw)
∑W

w=1 Γ (αw)
θα1−1
1 θα2−1

2 . . . θαW −1
W (11)The likelihood model in (9), where P (yt|θ) is a multi-nomial distribution (10) and P (θ|α, ct) is a Diri
hlet



8 Ananth Ranganathandistribution (11), is 
alled the Multivariate Polya model[25℄, or equivalently in do
ument modeling, the Diri
h-let Compound Multinomial (DCM) model [22℄. TheDCM distribution models burstiness in the data, i.e.given that a quantized feature appears on
e in a do
-ument, it is mu
h more likely for it to o

ur multipletimes rather than just on
e or twi
e. This is an assump-tion that intuitively holds for all realisti
 image data,parti
ularly sin
e we are dealing with densely 
omputedfeatures.Note that, sin
e we are using spatial pyramids asinput, it is only required to model the histograms atthe �nest level using the Multivariate Polya model sin
ethe 
oarser level histograms are simply summations ofthese. Thus, for a pyramid with V levels and level V = 0denoting the whole image, the dimensionality of α isjustW even though the spatial pyramid histogram itselfhas dimension 4V W .Performing the integration in (9), we get the �nalform of the likelihood as
P (yt|α, ct) ∝

n!
∏W

w=1 nw

Γ (|α|)
Γ (n+ |α|)

W
∏

w=1

Γ (nw + αw)

Γ (αw)
(12)where n =

∑

w nw, |α| =
∑

w αw, and Γ (.) denotesthe Gamma fun
tion. Graphi
al intuition for the DCMmodel is provided by Figure 5. If the likelihood of a setof measurements is to be 
omputed, then n is taken tobe the total 
ounts a
ross all measurements, while nwis the total 
ount for a parti
ular word, or in our 
ase,a spe
i�
 dense SIFT 
luster.Given the set of D histogram measurements 
on-tained in ct , the maximum likelihood value for α 
anbe learned by using iterative gradient des
ent optimiza-tion. It 
an be shown that this leads to the following�xed point update for the α parameter[25℄
αnew

w = αw

∑D
d=1 ψ(ndw + αw) − ψ(αw)

∑D
d=1 ψ(ndw + |α|) − ψ(|α|)

(13)where |α| =
∑

w αw as before, and ψ(.) is the Digammafun
tion, the derivative of the Gamma fun
tion. Faster,but more 
ompli
ated, updates using Gauss-Newton it-erations also exist [25℄. For new segments, we start theiterations with a prior value α0, whi
h we 
ompute asthe maximum likelihood α value of the whole trainingset.We use the DCM distribution as the measurementmodel to 
ompute the likelihood (6), and the α param-eter is also updated after ea
h measurement using theiterative rule (13) or the slightly faster Gauss-Newtonupdates. Thus, we only deal with (12) and do not needto perform the integration of (9). The iterative solutionfor α 
an be initialized using the previous value of α atea
h step so that 
onvergen
e is usually fast. However,

the 
al
ulation is still not in
remental in nature as itrequires all the segment data at ea
h step. Hen
e, wesee a O(n) time 
omplexity for the α parameter update,albeit with a very small 
onstant fa
tor, where n is thelength of segment so far. Also, the 
omputation of thedigamma fun
tion itself is relatively slow.5.2 A fast Gaussian 
hangepoint algorithmWe over
ome the relatively high amount of 
omputa-tion needed for using the Multivariate Polya distribu-tion as the measurement model by proje
ting the mea-surement histograms to a low dimensional spa
e andmodeling them using a multivariate Gaussian distri-butions. The theoreti
al justi�
ation for doing this isprovided by the seminal result of Dia
onis and Freed-man [10℄, who showed that most high dimensional data,when proje
ted down to a uni-dimensional spa
e, fol-low a Gaussian distribution. This 
an also observed inpra
ti
e by noting that many low dimensional data 
ol-le
tions follow Gaussian distributions (heights of men,birth weights of babies et
) while high dimensional dis-tributions are rarely Gaussian. This is mainly be
auseGaussianity demands a high degree of independen
e be-tween variables (a Gaussian is simply a rotated ver-sion of a distribution with independent 
oordinates)[8℄. This independen
e is easily obtained if the num-ber of variables is very small but be
omes progressivelyharder as the number of variables be
ome larger sin
eit is highly likely that these variable also depend onea
h other. Dia
onis and Freedman only proved theirresult for uni-dimensional proje
tions though this hasbeen extended to small multi-dimensional spa
es re-
ently [27℄. While the exa
t 
onditions required for thelow-dimensional proje
tions to be Gaussian are hard toverify in our 
ase, we �nd that this assumption worksin pra
ti
e, as we also demonstrate in our experiments.We proje
t measurements into a low dimensionalspa
e by normalizing the spatial pyramid histogramsby the total number of features in the image and us-ing Prin
ipal Components Analysis (PCA). The PCAproje
tion subspa
e is learned o�ine using some train-ing images whi
h 
an be the same as the ones usedto 
ompute the SIFT 
lusters for 
omputing the spa-tial pyramid histograms. In pra
ti
e, we use a 5 to 10dimensional subspa
e for proje
ting down the measure-ments.Assuming the proje
tion is to a d-dimensional spa
e,the likelihood (6) 
an be written using a multivariatenormal measurement model as
P (y|Θ) =

�
µ,Σ

P (y|µ,Σ)P (µ,Σ|Θ) (14)
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tion 9where Θ are the prior parameters for the multivariatenormal distribution, and µ and Σ are the mean and
ovarian
e matrix respe
tively. We use 
onjugate priordistributions for the unknown mean and 
ovarian
e pa-rameters. The standard distributions used for this pur-pose are a multivariate Gaussian on the mean and aninverse-Wishart distribution, a multivariate version ofthe Gamma distribution, on the 
ovarian
e
p(Σ) = Inv-Wishart(Σ|Λ0, ν)

p(µ|Σ) = N
(

µ;µ0,
Σ

κ0

)and Θ = {Λ0, ν, µ0, κ0} is the prior parameter set. Wehave not given the expressions for these distributionssin
e they are quite involved, espe
ially the inverse-Wishart distribution, and 
an be looked up easily fromany standard referen
e, for instan
e [16℄, pg. 85. The in-terpretations of the prior parameters are intuitive andagain 
an be found in standard referen
es.Due to the 
onjuga
y, the integration of (6) 
an beperformed analyti
ally to yield the predi
tive posteriordistribution as a multivariate Student-t distribution
p(yt|Θ, ct) = tνn−d+1

(

µn,
Λn (κn + 1)

κn (νn − d+ 1)

) (15)where
µn =

κ0µ0 + nȳ

κn

κn = κ0 + n

νn = ν + n

Λn = Λ0 + S +
κ0n

κn

(ȳ − µ0) (ȳ − µ0)
Twith n being the length of segment thus far (n = ct) , Sbeing the s
atter matrix S =

∑n
i=1 (yi − ȳ) (yi − ȳ)

T ,and ȳ is the data mean. By maintaining a few statis-ti
s, this predi
tive posterior 
an easily be updated in-
rementally so that the 
hangepoint algorithm in this
ase is mu
h faster than when using the MultivariatePolya distribution. Evaluating the Student-t distribu-tion of (15) 
an also be performed faster than in theMultivariate Polya 
ase sin
e no digamma evaluationsare ne
essary.6 Inferring the Pla
e LabelWe now turn our attention to the task of 
omputingthe pla
e labels given the 
hangepoint posterior whi
h
ontains the distribution over temporal segments. From(1), the 
onditional posterior on the pla
e label is
p(xc

t |ct, y1:t) = p(xc
t |yc

t ), whi
h we dire
tly model usingGaussian Pro
ess Classi�ers (GPCs).We use Gaussian Pro
ess 
lassi�ers (GPC) as pla
emodels. In our prior work [31℄, we used Multivariate

Polya models as pla
e models in addition to using themfor 
hangepoint dete
tion. However, these models aremore suited to 
lustering rather than 
lassi�
ation andresults degrade if the pla
e 
ategories share similarityor overlap due to too mu
h intra-
lass variation. Thisis parti
ularly true as the number of 
lasses in
reases.GPCs, on the other hand, are maximum margin 
las-si�ers that are 
apable of �nding de
ision boundarieseven in di�
ult high-dimensional s
enarios su
h as ours.The GPC 
lassi�es ea
h image in the 
urrent seg-ment individually. The label distributions obtained forea
h of the images are then averaged to obtain the labeldistribution for the segment
p(xc

t |yc
t ) =

1

ct

t
∑

T=t−ct+1

p(xT |yT ) (16)where p(xT |yT ) is the 
lassi�
ation result from the GPCfor a single image yT (the 
onditioning on the trainingimages has not been shown for simpli
ity). If we have Lpla
e models, the GPC 
lassi�
ation result is a dis
reteprobability distribution with L 
omponents, and theseare averaged as shown above in (16).While a produ
t of the individual image probabili-ties would be the theoreti
ally a

urate way to obtainthe segment label distribution in (16), we �nd the aboveto be more robust in pra
ti
e. This so 
alled �summa-tion ha
k� has been used in many other areas and sometheoreti
al justi�
ation also exists for it's better perfor-man
e [55℄.We use Spatial Pyramid histograms (SPH) 
om-puted as explained above in Se
tion 5 as input to theGPC. However, sin
e the dimensionality of the histogramsis extremely high, we �rst proje
t it down to a lowerdimensional subspa
e using PCA, sele
ting the dimen-sionality of the subspa
e so that most of the varian
e inthe training dataset is 
aptured. Empiri
ally, we havefound that for a two level histogram using 400 
lus-ters (dimensionality 2000), a 50 dimensional subspa
esu�
es in almost all 
ases.6.1 Gaussian pro
ess 
lassi�ers as pla
e modelsA Gaussian Pro
ess is a distribution over the spa
e offun
tions su
h that the joint distribution over any 
ol-le
tion of data points is a Gaussian. GPs 
an be viewedas probabilisti
 kernel ma
hines, and hen
e, 
an pro-vide not only a mean value predi
tion but also the un-
ertainty measured in terms of standard deviation for atest sample. A large standard deviation signals the ab-sen
e of any training data in the neighborhood of thetest sample, and provides an indi
ation of poor gener-alization.



10 Ananth RanganathanFor performing 
lassi�
ation, we assume the avail-ability ofN inputs y = {y1:N} and 
orresponding train-ing outputs t = {t1:N}. The 
ovarian
e fun
tion of theGP is then given by the N ×N Gram matrix K(y,y).Typi
ally, the kernel fun
tion has a number of parame-ters θ, whi
h are also 
alled the hyperparameters of theGP, that have to be learned using the training set. Weuse the following 
ommonly used kernel fun
tion
K(y, y′) = v0 exp

{

−1

2

d
∑

i=1

wi (yi − y′i)
2

}

+ v1 (17)where d is the dimensionality of the training inputs and
θ = {log v0, log v1, logw1, . . . , logwd} are the parame-ters to be learned from training data.For performing multi-
lass 
lassi�
ation using GPCs,we 
losely follow the exposition of Williams and Barber[45℄ and also use their method in our implementation.Classi�
ation is performed by passing the 
ontinuousregression output of the Gaussian Pro
ess through asoft-max transfer fun
tion so that it 
an be interpretedas the probability of the input belonging to one of m
lasses. The 
ontinuous output of the GP is 
alled thea
tivation at the input value. We use one GP per 
lasslabel, denoting the input as yi and a
tivation as xc

i for
lass c. The probability of belonging to the cth 
lass,denoted by πc
i , is thus given by

πc
i =

expxc
i

∑

c′ expxc′

i

(18)The Bayesian predi
tion distribution for an a
tiva-tion value x∗ , whose 
orresponding input is y∗, is givenby
p(x∗|t) =

�
p(x∗,x|t)dx

=
1

p(t)

�
p(x∗,x)p(t|x)dx (19)where x are the a
tivations 
orresponding to the train-ing data. For a GP, the joint distribution on trainingdata and query point a
tivations is a Gaussian distribu-tion with 
ovarian
e fun
tion given by the Gram matrixon the set {y, y∗}. We only 
onsider GPs having meanzero in this dis
ussion as this is su�
ient for our pur-poses. The error model p(t|x) is the multinomial distri-bution of (10).It is not possible to perform the integration in (19)analyti
ally. Following [45℄, we use the Lapla
e approxi-mation whi
h 
enters a Gaussian around the maximumof the distribution with the inverse 
ovarian
e given bythe negative Hessian (se
ond derivative matrix) of theintegrand p(x∗,x|t). Sin
e the likelihood is a multino-mial distribution, the log-likelihood of the training datais L =

∑

i,c t
c
i lnπc

i , where tci is the probability of the

ith training instan
e taking on 
lass c. Using (18), weget the log-likelihood as
L =

∑

i,c

tci

(

xc
i − ln

∑

c′

expπc′

i

) (20)Computing the Lapla
e approximation 
an be a

om-plished using a series of Gauss-Newton steps and is no-tationally 
omplex but straight-forward otherwise. Werefer the reader to [45℄ for the details.The GP parameters θ are also obtained using a max-imum aposteriori method where the posterior to maxi-mize is
p(θ|t) ∝ p(t|θ)p(θ)

=

�
p(t|x)p(x|θ)p(θ)dxThe �rst term of the integrand is the likelihood (20)while p(x|θ) is simply the GP prior involving a zeromean Gaussian with the Grammatrix as the 
ovarian
e.We again use Lapla
e's approximation on the integrandand perform the integral analyti
ally subsequently. Theoptimization to obtain the Lapla
e approximation iseven simpler than the previous 
ase and we omit thedetails again.The parameters θ are learned during training timeand the predi
tive distribution (19) is evaluated forea
h input at runtime. Sin
e this evaluation involvesa Lapla
e approximation, it is relatively slow. However,sin
e we do not expe
t pla
e 
ategorization to be re-quired after every step the robot takes, this system isstill suitable for online operation.For ea
h segment provided by the 
hangepoint de-te
tion algorithm, we �nd the pla
e label by jointly 
las-sifying all the measurements in the segment using (19)and (18). This provides more robustness than 
lassi-fying single measurements as in a single SVM, sin
e ine�e
t, the label probabilities are obtained by votes fromall the measurements from the segment so that a fewindividual mis
lassi�
ations 
an be tolerated withouta�e
ting the segment label.7 Unknown pla
e 
ategory dete
tionDete
tion of an unknown pla
e requires more involved
al
ulation. We previously used statisti
al hypothesistesting for this purpose [31℄. Hypothesis testing is usedto show that the data does not arise from any of themodels 
orresponding to known pla
es. At ea
h timestep,

L hypothesis tests are performed with ea
h of the Lpla
e models to determine if the data arises from aknown pla
e. However, hypothesis testing is not s
al-able with in
reasing number of pla
e labels and 
an only
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Fig. 6: Hard to 
ategorize inputs (also 
alled perplexing inputs)are 
lose to the margin, i.e. have a small a
tivation value x∗and/or have a large GP un
ertainty due to being far away fromtraining data. In the �gure, these regions are shown in purple.be used with probabilisti
 models su
h as the Multi-variate Polya models used in [31℄. As mentioned before,these models do not yield good 
lassi�
ation results indi�
ult environments.In this work, we take a di�erent approa
h to dete
t-ing unknown pla
es based on the un
ertainty providedin the GP output. Firstly, note that the a
tivation ofthe GP for an input is proportional to the distan
e tothe margin of the 
lassi�er, the margin being the 
las-si�
ation boundary in kernel methods. Inputs that are
lose to the margin are harder to 
lassify for the GPwhile inputs far away from the GP on either side ofthe margin 
an be 
on�dently 
lassi�ed. This is similarto a SVM. However, in a GP, we also obtain a large
ovarian
e, and hen
e a low likelihood of the 
orre
t
lassi�
ation, when the test point is far away from anytraining point. Thus, we 
an say that measurementsfrom unknown pla
e 
ategories will generally either lie
lose to the margin or far away from any training data.This is illustrated in Figure 6. The 
ovarian
e of thea
tivation value is obtained through the Lapla
e ap-proximation, whi
h gives the inverse 
ovarian
e as thenegative Hessian of the integrand in (19).We dete
t unknown pla
es using both the a
tiva-tion value and the 
ovarian
e provided by the GPC. Inparti
ular, we use the perplexity statisti

p∗ =

x∗√
Σ∗

(21)where x∗ is the a
tivation value as before and Σ∗ is theasso
iated 
ovarian
e value. Note that p∗ has small val-ues for di�
ult inputs. This has previously been used inthe 
ontext of a
tive learning in 
omputer vision to de-te
t and learn perplexing examples whi
h the 
lassi�eris having trouble labeling [18℄.

We 
ompute the perplexity statisti
s for mis
lassi-�ed training examples and also 
al
ulate their meanand varian
e. Note that sin
e p∗ is small for di�
ultexamples, �nding the average over the whole trainingset would bias the value upwards. We set as thresholdthe value
t∗ = p∗av − 2σ∗

av (22)where p∗av is the average perplexity of the mis
lassi-�ed training examples and σ∗

av is their standard devia-tion. During runtime, any test instan
e having perplex-ity value less than t∗ is 
lassi�ed as an unknown pla
e
ategory. We only set the segment label to be unknownif a majority of the test instan
es in the segment have anunknown pla
e 
ategory. In su
h a 
ase, the probabilityof the unknown pla
e 
ategory is set apriori to a distri-bution for unknown pla
es p(x|new label). This distri-bution should re�e
t our knowledge that the segment ismore likely to 
orrespond to a new label than to one ofthe known ones. We do this by setting p(x|new label)su
h that the probability of the new label is twi
e theprobability of the other known 
lasses. However, vari-ous other 
hoi
es (su
h as setting p(x|new label) = 0.9)are also possible.In terms of implementation, we augment the 
hange-point algorithm des
ribed in Se
tion 4 so that the dis-
rete distribution on pla
es is stored with ea
h segment
ct. Similarly, in the parti
le �lter, ea
h parti
le main-tains a pla
e distribution. The pla
e distribution gen-erally be
omes in
reasingly 
on�dent as the length ofthe segment ct in
reases and is robust to noisy measure-ments and outliers. However, sin
e it is also re
omputedwith ea
h measurement, the algorithm does not makeany irrevo
able de
ision with regard to the pla
e labeland 
an �
hange its mind� given enough eviden
e. The
ost of updating the pla
e distribution is linear in thenumber of labels and hen
e, does not a�e
t the runtimeof the 
hangepoint algorithm.A re
ap of the overall PLISS algorithm using theGP 
lassi�er for pla
e models is given in Algorithm 1.This algorithm uses the Diri
hlet Compound Multino-mial (DCM) model but the 
hangepoint dete
tion part
an similarly be 
omputed using the Gaussian ansatzas explained in Se
tion 5.2.8 ExperimentsWe present extensive experiments probing the variousparts of the PLISS system and 
omparing it with an-other state of the art method. Unless noted otherwise,all results were obtained using 50 parti
les in the par-ti
le �lter approa
h. The λ parameter in the transitionprobability (5) was set to 20 based on 
ross validation



12 Ananth RanganathanAlgorithm 1 Parti
le �ltering algorithm for PLISS us-ing the DCM (aka Multivariate Polya) model and Gaus-sian Pro
ess 
lassi�er1. Initialize: Set prior parameter α0 to be the maximum likeli-hood value of the DCM parameter on the training set. Learna GPC on the training set. For all parti
les, c0 = 0 and
x0
0 = unif (unif. dist. over known labels). Learn perplexitythreshold t∗.2. Update parti
le set:For every timestep t do -For every parti
le 
ontaining weight, segment length, labeldistribution, and DCM parameter {wt−1, ct−1, xc

t−1, αc
t−1}do� Create two new parti
les (1) No 
hangepoint 
ase

l1 = {wt−1, ct−1 + 1, xc
t−1, αc

t−1} (2) 
hangepoint l2 =
{wt−1, 0, unif, αc

t−1}� Compute the prior for the (4) and update weights of l1and l2� Using yt, learn new parameter αc
t for l1 using (13) andset parameter α0

t for l2 to α0� Compute in
remental weights for l1 and l2 using parti
leweight de�nition (8) and DCM likelihood fun
tion (12)and multiply with parti
le weights3. Resample from weights to get new set of parti
les4. Update pla
e distributions:For every parti
le {wt, ct, x
c
t−1, αc

t} do� Compute the perplexity statisti
 for ea
h test instan
ein segment and determine if segment is unknown pla
e
ategory� If yc
t is from an existing pla
e 
ategory, 
ompute xc

t using(16)� If yc
t is from an unknown pla
e, 
reate new pla
e labeland set xc

t to the prior distribution p(x|new label)
performed on a subset of the training data. For usingthe Gaussian 
hangepoint algorithm, the spatial pyra-mids were proje
ted down to a 10-dimensional subspa
ebefore modeling using a multivariate Gaussian distri-bution. The initial mean and 
ovarian
e, whi
h are thepriors for the multivariate Gaussian distribution, were
omputed from all the training data. The prior parame-ter for the DCMmodel was also similarly 
omputed. Weimplemented the system in Matlab with key portions,su
h as k-means 
lustering for 
omputing the SIFT vi-sual words, performed in C. All timing results are ob-tained by running the system on a Ma
book Pro laptopwith 8 GB RAM.SIFT features were 
omputed in all 
ases on a gridhaving distan
e 2 pixels between nodes in both x andy dire
tions. Features were 
omputed on 16x16 imagepat
hes. The features were 
lustered to obtain a di
-tionary of size 1024. We used a three-level pyramid to
ompute the spatial pyramid histogram in all 
ases.

Fig. 7: Some examples of image frames from the VPC dataset.Note the image at top 
enter showing a door and a wall, whi
his impossible to 
ategorize as anything other than �unknown�.8.1 The VPC DatasetWe use the VPC dataset [46℄ for almost all our exper-iments. The dataset 
onsists of image sequen
es fromsix di�erent homes, ea
h 
ontaining multiple �oors. Thedata is grouped into image sequen
es from the �oorsand the image set from ea
h home 
onsists of between6000 and 10000 frames. In our experiments, we 
on-sider sequen
es from ea
h �oor to be a di�erent imagesequen
e. The dataset has been manually labeled into
ategories to provide ground truth for the pla
e 
ate-gorization problem. Five 
ategories are present in allthe sequen
es and hen
e, we only use these labels inour experiments. This also helps fa
ilitate 
omparisonagainst [46℄. In addition, a �transition� 
ategory is usedto mark segments that do not 
orrespond 
learly to anyone 
lass. The VPC dataset is espe
ially di�
ult sin
eno e�ort has been made to keep all the images in thesequen
e informative. Thus, a number of images 
on-tain only a wall, whi
h is something that 
ould alsobe expe
ted when a robot is moving around. This isillustrated in Figure 7 through some images taken atrandom from the dataset.8.2 Implementation of the VPC algorithmWe implemented the VPC system of [46℄ whi
h usesCENTRIST features and provides a referen
e ben
h-mark for the VPC dataset. The system 
onsists of anaive Bayes 
lassi�er, the output of whi
h is �lteredusing Bayesian �ltering. We now des
ribe the imagerepresentation used by the VPC system.The underlying features used by the VPC systemis CENTRIST, whi
h in turn is based on the 
ensustransform [48℄. The 
ensus transform is a lo
al feature
omputed densely for every pixel of an image, and en-
odes the value of a pixel's intensity relative to that ofits neighbors. It was originally introdu
ed for identify-ing 
orresponden
e between lo
al pat
hes. The 
ensustransform is 
omputed by 
onsidering a pat
h 
enteredat every pixel. The transform value is a positive inte-
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h. For instan
e, a pat
h size of 3x3, wherethere are 8 pixels in the pat
h apart from the 
entralpixel, yields transform values between 0 and 255 (2^8values). This is equivalent to having a di
tionary sizeof 256 without the need for the 
lustering step. Com-puting a histogram of these 256 values yields the CEN-TRIST (
ensus transform histogram) des
riptor. A bigadvantage of the 
ensus transform is that it is extremelye�
ient to 
ompute.The image representation used by the VPC systemis obtained by dividing an image into 16 equal segmentson a 4x4 grid and 
omputing a CENTRIST des
riptorfor ea
h segment. The des
riptors for ea
h segment ob-tained on all the images of the training set are thenve
tor quantized using the k-means algorithm, i.e. weobtain 16 CENTRIST 
odebooks, one for ea
h imagesegment. The CENTRIST des
riptors are then repla
edby their 
orresponding 
luster number, so that the �nalimage representation is simply a 16-dimensional ve
tor,ea
h 
ontaining a number between 1 and K, where Kis the number of 
lusters in ea
h of the 
odebooks.For 
omputing the 
ensus tranform itself, we usedpat
h sizes of 3x3 and 5x5. While the natural di
tionarysize of 256 was used for the 3x3 
ase, we 
lustered the
ensus transform obtained from the 5x5 
ase to obtain1024 
lusters.8.3 Changepoint dete
tionWe evaluated the 
hangepoint dete
tion by 
omparingthe 
hangepoints dete
ted by the algorithm with thegroundtruth in the 
ontext of our appli
ation, i.e. thetime instants when the robot enters or exits a parti
ularpla
e or pla
e 
ategory. A subset of the VPC dataset
onsisting of six image sequen
es (sequen
es from six�oors of homes) and 
ontaining a total of 14,346 frameswas used for the evaluation. Changepoints were taken tobe video lo
ations where pla
e label 
hanges are markedin the groundtruth labeling of the dataset. The totalnumber of 
hangepoints in these sequen
es, thus de-�ned, was 76.Note that, by de�nition, the algorithm is trying todete
t 
hangepoints as lo
ations where the parametersof the model undergo a drasti
 
hange whereas thegroundtruth de�nes 
hangepoints as 
orresponding to
hanges in pla
e label. Hen
e, this experiment providesa dire
t test of the e�e
tiveness of our modeling of thepla
e 
ategorization problem. In this 
ontext, it is moreimportant for the algorithm to dete
t lo
ations wherethe label 
hanges than to avoid spurious dete
tions.This is be
ause a missed dete
tion (false negative) 
re-ates a data segment wherein measurements arising from

Fig. 8: Changepoint dete
tion performan
e for PLISS using var-ious types of features
Fig. 9: Comparison of 
hangepoint dete
tion performan
e withMultivariate Polya model and it's approximation using the lowdimensional multivariate Gaussian distribution.two types of pla
e labels have been 
onjoined, whi
h
an lead to a large segment of input being mis
lassi-�ed. On the 
ontrary, if the algorithm even wrongly de-te
ts a 
hangepoint at ea
h frame in the worst 
ase, itwill only default to frame-wise 
lassi�
ation. Thus falsenegatives in the 
hangepoint dete
tion a�e
t the per-forman
e of the pla
e 
ategorization more drasti
allythan false positives.The 
hangepoint dete
tion performan
e using var-ious features is shown in Figure 8. SIFT-based imagepyramids yield better results than CENTRIST featureswith underlying 
ensus tranform 
omputed on 3x3 and5x5 pat
hes. All the systems were based on the Multi-variate Polya model and a 
hangepoint was de
lared tohave been found if a system �red within 20 frames ofthe groundtruth, whi
h is about 2 se
onds of laten
y atthe experimental frame rate.Contrary to what we have stated above, the num-ber of false negatives is higher in all 
ases in Figure 8.This is be
ause a number of the manually marked label
hanges 
orrespond to short �transition� regions whenthe robot is moving from one room to another. However,in many instan
es, our algorithm skips these transitionsegments and only dete
ts a single 
hangepoint for themotion of the robot from one room to the next. To statethis more 
on
isely using an example, the groundtruthis marked as �living room -> transition -> bedroom�,thus giving us two 
hangepoints, while our algorithmonly dete
ts it as �living room segment -> bedroomsegment�. This 
an result in two false negatives and afalse positive in the worst 
ase. Finally, we note thatmany of the 
hangepoints, espe
ially involving �transi-tion� regions, are di�
ult even for a person to re
ognizeas su
h and 
an depend on individual judgement.
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omparison of the 
hangepoint dete
tion resultsusing the Gaussian model versus the Multivariate Polyamodel is given in Figure 9. A 10-dimensional subspa
ewas used in the Gaussian 
ase and dense SIFT feature-based spatial pyramids were used in both 
ases to rep-resent the images. It 
an be seen that the results are al-most identi
al, proving that our proje
tion into the sub-spa
e does not lose any vital information, and nor doesthe modeling using the Gaussian distribution as op-posed to the mu
h more 
omplex high-dimensional Mul-tivariate Polya model. The average runtime per framewas 0.07 and 0.63 se
onds using Gaussian and Multi-variate Polya distributions respe
tively. This validatesour 
laim that use of the proje
ted Gaussian distribu-tion for 
hangepoint dete
tion improves e�
ien
y with-out a�e
ting performan
e. Note that the runtimes areonly for the 
hangepoint dete
tion and do not in
ludepla
e labeling using the Gaussian pro
ess 
lassi�er.8.4 Pla
e 
ategorization with and without 
hangepointdete
tionWe now provide results from our experiments on the
omplete VPC dataset. We obtained results using theleave one out strategy followed by [46℄ to fa
ilitate 
om-parison, i.e. the system was trained on labeled datafrom �ve houses and tested on the sixth one. The pla
e
ategorization performan
e reported here is from theaverage of having all six houses as the test 
ase in turn.Following [46℄, only �ve labels were used for the training- kit
hen, bedroom, bathroom, living room, and diningroom - and the �transition� label marking frames be-longing to none of these pla
e 
ategories was omittedfrom the 
lassi�
ation results.We �rst tested the e�e
t of using 
hangepoint de-te
tion on the pla
e 
ategorization performan
e. Forthis, we implemented a system that performs frame-wise 
lassi�
ation using a GPC in the manner des
ribedin Se
tion 6.1. The framewise output is then �lteredusing a Bayesian �ltering s
heme. We 
all this system'GPC-�lt'.Results of these systems are shown in Figure 10whi
h denotes the PLISS system using the Multivari-ate Polya model as 'PLISS-MP'. Our implementationof the VPC system was unable to exa
tly repli
ate theresults of [46℄, as 
an be seen in Figure 10, possibly be-
ause of engineering issues in the implementation. How-ever, the trends a
ross label types still hold. GPC-�ltperforms similar to the VPC system while PLISS-MPperforms signi�
antly better than our implementationof the VPC system and slightly better than the resultsreported in [46℄. An improvement of 2% is signi�
antsin
e the varian
e of the averages was less than 0.2% in

Fig. 10: E�e
t of using 
hangepoint dete
tion for pla
e 
ategoriza-tion of known pla
es only. The top row gives the results from [46℄while the se
ond row 
ontains results from our implementation ofthe same system. GPC-�lt is the system using frame-wise GPC
lassi�
ation without 
hangepoint dete
tion and PLISS-MP is thePLISS system using the Multivariate Polya model for 
hangepointdete
tion. All numbers are per
entages.our experiments. Note that only the frames belongingto the �ve 
ategories were 
onsidered for 
omputing the
lassi�
ation a

ura
y. The 
lassi�
ation numbers forthe �Living Room� and �Dining Room� are low be
ausethese 
ategories vary the most a
ross image sequen
esand are easy to 
onfuse with others. This is in part alsobe
ause there are no distin
tive obje
ts in these 
at-egories as opposed to, for instan
e, the �Kit
hen� and�Bathroom� 
lasses.Sin
e the only di�eren
e between PLISS-MP andGPC-�lt is the 
hangepoint dete
tion (they share thesame 
lassi�er and use the same features), we 
an at-tribute the signi�
ant improvement in 
lassi�
ation a
-
ura
y to the use of 
hangepoint dete
tion. However,the drawba
k of using 
hangepoint dete
tion is a sloweralgorithm as 
ompared to Bayesian �ltering. Runtimeper frame for pla
e 
ategorization was 0.85 se
onds forPLISS-MP and 0.27 se
onds for GPC-�lt. However, thisruntime is not too high in absolute terms even when us-ing 
hangepoint dete
tion, and 
ould possibly be maderealtime with some optimizations and an implementa-tion 
ompletely in C. We believe this is a small pri
e topay for the 
onsistently higher 
lassi�
ation a

ura
yand in
reased robustness.8.5 Unknown pla
e 
ategory dete
tionOne of the main advantages of PLISS in relation tomost existing methods, in
luding the VPC system, isthat it 
an dete
t unknown labels. For instan
e, thereare labels, su
h as �workspa
e�, �family room�, and �
loset�,whi
h are present in only a few sequen
es of the VPCdataset. The 
lassi�er in PLISS and the VPC systemdo not know about these labels.We quanti�ed the ability of PLISS to dete
t un-known pla
es by training the VPC system on an addi-tional 
ategory named �transition�, in addition to the�ve 
lasses shown in Figure 10. The �transition� 
lass
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Fig. 11: Pla
e 
ategorization performan
e with unknown pla
e
ategory dete
tion. VPC performan
e (se
ond row) goes downsigni�
antly when trained on the transition 
ategory that in
ludesall unknown 
ategories. Performan
e of the PLISS systems is un-a�e
ted. All numbers are per
entages.
ontains all the labels not belonging to any of these�ve 
lasses. Sin
e this is a 
at
h-all label with widevariation, we do not expe
t a 
lassi�er-based systemsu
h as VPC to perform well in labeling this 
lass.The PLISS system does not need to be trained on this�transition� label as it is supposed to dete
t these asan unknown 
ategory. We tested the PLISS system us-ing both the Multivariate Polya model for 
hangepointdete
tion (PLISS-MP), and the Gaussian 
hangepointmodel (PLISS-Gauss).Training and testing on the VPC dataset were per-formed similar to the previous se
tion with trainingdone on sequen
es from �ve houses and testing per-formed on the sixth one. Results were averaged a
rosssix runs with ea
h of the six houses taken as the testset in turn.Results of this experiment are shown in Figure 11.Note that results for the VPC system from [46℄ donot in
lude the transition label sin
e it is not dete
tedtherein. Surprisingly, the performan
e of the VPC sys-tem when trained on the �transition� 
lass is mu
h lowerthan before. The naive bayes 
lassi�er underlying theVPC system gets 
onfused by the in�ux of a new 
at-egory with a large intra-
lass variation and it's perfor-man
e de
reases a
ross the board. Indeed, many of theframes marked as �transition� in the dataset a
tuallylook into pla
es belonging to the other 
ategories asshown in Figure 13. This 
auses 
onfusion in the 
lassi-�er as the 
lasses are no longer as 
learly separated asbefore, so that 
lassi�
ation performan
e is a�e
ted.In 
ontrast, the results of the PLISS system remainuna�e
ted and are, in fa
t, the same as shown in Figure10. The PLISS systems were deemed to have re
ognizeda segment as belonging to the transition label whenthey labeled it as unknown. Thus, the PLISS systemsprovide signi�
antly better 
lassi�
ation a

ura
y thanthe VPC system even with the addition of the transi-tion label in the average 
lassi�
ation rate. These re-sults provide strong validation for the soundness of our

Fig. 12: Confusion matrix 
orresponding to the PLISS-MP resultof Figure 11. All numbers are per
entages.
Fig. 13: Images labeled �transition� in the VPC dataset that a
-tually look into pla
es of other 
ategories. This makes learning a
lassi�er for the �transition� label very hard.strategy for dete
ting unknown pla
e 
ategories, andalso for the usefulness and need for having this ability.We believe that this ability for dete
ting unknown pla
e
ategories will be 
ru
ial for systems to be deployablein pra
ti
al s
enarios.A 
onfusion matrix for the PLISS-MP system isshown in Figure 12. Most mis
lassi�
ations are givena �transition� label. However, the �Living Room� and�Dining Room� 
ategories are often 
onfused with ea
hother, and also with some of the other 
ategories inthe 
ase of the latter 
ategory. A signi�
ant per
ent-age of these mis
lassi�
ations o

ur when small videosegments, obtained due to false positives in the 
hange-point dete
tion, are in
orre
tly 
lassi�ed.8.6 Choi
e of image featuresWe evaluated the use of various low-level image featuresinside PLISS to determine their e�e
t on a

ura
y. Forthis purpose, we implemented three �avors of PLISSbased on spatial pyramid histograms using dense SIFTfeatures, and the CENTRIST representation used byVPC with 
ensus transform 
omputed on 3x3 and 5x5pixel image pat
hes. Implementation details of thesefeatures are given in Se
tion 8.2 and at the beginningof Se
tion 8.
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Fig. 14: E�e
t of the 
hoi
e of image features on 
lassi�
ationperforman
e. All results (ex
ept the VPC system) have been ob-tained using the PLISS-MP system. All numbers are per
entages.

Fig. 15: Examples of images obtained from Google image sear
hused for training pla
e models.Results on the VPC dataset for the PLISS-MP sys-tem are given in Figure 14. We �nd that dense SIFTperforms best and the di�eren
e with the Census trans-form based systems is signi�
ant. This is due to theextremely su

in
t representation used by the VPC sys-tem (a 16-dimensional ve
tor for the whole image) whi
h
ontains mu
h less information 
ompared to the spa-tial pyramid histogram. However, the results using theCENTRIST representations are still equal to or bet-ter than the 
orresponding VPC results in Figure 11.This demonstrates that while the feature used by us
ontributes a little to the improved result, the biggerin�uen
e is due to the PLISS algorithm.While [46℄ also has a 
omparison of SIFT versus theCENTRIST des
riptor, they 
reate 16-dimensional de-s
riptors from quantized SIFT features in an analogousmanner to CENTRIST, and 
on
lude that CENTRISTis the better feature. However, our observation here isthat the spatial pyramid histogram, whi
h was not usedin [46℄, is a better representation than CENTRIST inthe 
ontext of PLISS.

Fig. 16: Results from using pla
e models trained on images ob-tained from Google's image sear
h. Average 
lassi�
ation per-
entage is obtained from six 
ategories for PLISS-Gauss and �ve
ategories for SVM-CP. All numbers are per
entages.8.7 Learning from Google Image dataWe tested the PLISS system by obtaining training datafrom the internet. This gives us a sense of how well thesystem performs when training data is totally disparatefrom test data. It also ensures that any hidden 
orre-lations between image sequen
es in the VPC datasetdo not bias the 
lassi�
ation results upwards. We ob-tained 200 training images for ea
h of the �ve 
lassesof the VPC dataset by simply typing the label in theGoogle image sear
h engine and downloading the re-sulting images. We ensured that irrelevant images arenot present in the training set while not removing anyrelevant image, i.e. no sele
tion bias was present otherthan to ensure that the image was of the parti
ularpla
e 
ategory. We then trained the GPC 
lassi�er inthe PLISS system on this training set and tested onall of the VPC dataset. A few representative images ofea
h of the 
ategories are shown in Figure 15.Results for PLISS-MP, PLISS-Gauss and VPC areshown in Figure 16. Classi�
ation a

ura
ies here aremu
h less than before due to the extreme di�
ulty ofthe problem. However, our aim is to show that PLISSstill does something sensible in su
h s
enarios. As ex-pe
ted, large portions of the test data are labeled asunknown pla
e 
ategory by PLISS-Gauss, whi
h wouldbe the 
orre
t thing to do given the training data. TheVPC system was trained only the �ve relevant 
ate-gories as obtaining training data for a �transition� 
at-egory from a Google image sear
h did not make senseand, in any 
ase, would have the made the problemmu
h harder. The VPC results are only on these �ve
ategories as is the average a

ura
y. Even for these
ategories the a

ura
y is severely redu
ed.9 Dis
ussionWe have presented PLISS, a system for pla
e re
ogni-tion and labeling based on 
hangepoint dete
tion. PLISSs
ales well with in
reasing numbers of pla
e labels, hasthe signi�
ant advantage of being able to dete
t un-
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e 
ategories, is 
omputationally e�
ient, andhas 
lassi�
ation a

ura
y better than state of the artsystems. PLISS gets it's robustness from labeling notindividual frames, but segments of image sequen
es,whi
h in turn are obtained probabilisti
ally using 
hange-point dete
tion. We use the Multivariate Polya modelfor 
hangepoint dete
tion and have demonstrated thatthis works e�e
tively on a wide range of image sequen
es.Our method also en
ompasses a novel method for de-te
ting the 
ase where the pla
e 
ategory of an imageor a segment from a video is unknown. This is basedon the un
ertainty estimate obtained from the Gaus-sian Pro
ess 
lassi�er whi
h we use for modeling pla
e
ategories in a supervised setting.We have presented extensive experiments on theVPC dataset that yield the following 
on
lusions -� Changepoint dete
tion using the Multivariate Polyamodel and the proje
ted multivariate Gaussian modelare a suitable means to segment the video sequen
esinto pie
es that 
orrespond to spe
i�
 pla
e 
ate-gories� Use of 
hangepoint dete
tion improves the pla
e 
las-si�
ation a

ura
y over frame-wise 
lassi�
ation meth-ods that use Bayesian �ltering� Dete
ting unknown pla
e 
ategories improves the
lassi�
ation a

ura
y overall, apart from the fa
tthat it is useful, if not essential, in itself.� PLISS performs better than state of the art pla
e
ategorization systems in most 
ases� Our perplexity measure and the perplexity thresh-old for dete
ting unknown pla
e 
ategories, given by(22), perform well in our experiments� Gaussian Pro
ess 
lassi�er (GPC) for pla
e mod-eling, along with our perplexity measure for deter-mining images belonging to unknown 
ategories, ispowerful enough to provide reasonable results evenon training data that is very disparate from the testdata, as shown by our Google image dataset exper-imentThe basi
 assumption underlying PLISS is that pla
esare su�
iently distin
t to be identi�ed visually. If thisis not the 
ase, i.e. the environment is severely per
ep-tually aliased, performan
e will degrade as with anyvision-based system. However, PLISS 
an be extendedto in
orporate multiple sensors to over
ome su
h s
e-narios. We envision signi�
ant performan
e improve-ments with more sophisti
ated pla
e models. Su
h mod-els may even in
orporate obje
t and 
ontext informa-tion from pla
es, whi
h Gaussian Pro
ess 
lassi�ers 
an-not do easily.Using 
hangepoint dete
tion in PLISS, we label largesegments that have been identi�ed to be visually ho-mogeneous. In 
ontrast, �ltering only takes into a
-


ount the previous frame's label and so provides an ex-tremely lo
al 
onstraint. In prin
iple, we 
ould extendthe Bayesian �ltering to take into a

ount the previ-ous n frame labels rather than just one in the followingmanner
p(xt−n+1:t|h1:t) ∝ p(ht−n+1:t|xt−n+1:t)

∑

x
t′

p(xt|xt′:t−1)p(xt′:t−1|h1:t−1) (23)where t′ = t − n and ht is the measurement at time t.This is also a re
ursive formulation, known as �xed-lagsmoothing [34℄, and is signi�
antly more 
ompli
ated toimplement. Our use of 
hangepoint dete
tion 
an alsobe viewed as an adaptive �xed-lag smoothing algorithmwherein n 
hanges with ea
h step. This is 
lear througha 
omparison of (23) with equations (2) and (3).PLISS 
an learn and update pla
e models online ifan online version of the GPC is used [52℄, a s
enariowhi
h we have not dis
ussed here. This is helpful in
ases where measurements from the same 
ategory showvariation (albeit only if the variation is gradual). Poten-tially, PLISS 
ould also learn new 
ategories online if anora
le were available for the �rst few times that theselabels appear. Investigating the online usage of PLISSis future work.Our future work in
ludes the use of the histograminterse
tion kernel [17℄ inside the GPC. Sin
e this kernelforms the natural metri
 spa
e between spatial pyramidhistograms, better results 
an be expe
ted. However, aproblem that needs to be over
ome is the high dimen-sionality of the histograms and the resulting ine�
ien
yof the system. Another area for future work is to in
or-porate information from multiple sensors, su
h as depthand range sensors, in addition to images. Use of 3Dgeometri
 information and other image features su
has edges is also future work. Finally, we would like toevaluate the online learning aspe
t of PLISS more andimprove upon it to produ
e a system with in
reasedpra
ti
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