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Abstract A shared vocabulary between humans and
robots for describing spatial concepts is essential for ef-
fective human robot interaction. Towards this goal, we
present a novel technique for place categorization from
visual cues called PLISS (Place Labeling through Image
Sequence Segmentation). PLISS is different from exist-
ing place categorization systems in two major ways -
it inherently works on video and image streams rather
than single images, and it can detect “unknown” place
labels, i.e. place categories that it does not know about.
PLISS uses changepoint detection to temporally seg-
ment image sequences which are subsequently labeled.
Changepoint detection and labeling are performed in-

side a systematic probabilistic framework. Unknown place

labels are detected by using a probabilistic classifier and
keeping track of its label uncertainty. We present ex-
periments and comparisons on the large and extensive
VPC dataset. We also demonstrate results using models
learned from images downloaded from Google’s image
search.

1 Introduction

Place categorization is the problem of tagging places
with semantically meaningful labels. As opposed to place
recognition, which deals with the task of consistently
identifying a specific place every time it is visited and
is useful in robotic mapping, categorization deals with
higher-level knowledge and semantic mapping. Some
examples of categories are “Kitchen”, “corridor”, “Li-
brary”, and “Fast food joint”. As is immediately evi-
dent, place categorization is dependent on the task at
hand and the resolution of semantic knowledge required
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since there can be multiple labels at different spatial
levels applicable to the same place. Place categoriza-
tion is essential in order for a robot or an intelligent
agent to semantically understand places in a manner
similar to that done by people. It is also useful, if not
a requirement, for semantic mapping and can provide
contextual cues for many problems in computer vision.
For instance, the label of a place places a strong prior
on the types of objects found there [41].

Most existing place recognition systems are classifier
based, and assume a finite set of place labels which are
learned offline from supervised training data. The sys-
tem may learn a one-vs-all classifier or a separate binary
classifier for each label. The classifier then categorizes
input images sequentially during runtime. The advan-
tage of these systems is simplicity and the availability
of off-the-shelf components such as Support Vector Ma-
chines (SVMs) [37].

However, systems based on straight-forward appli-
cation of classifiers also have a few significant disadvan-
tages. Firstly, classification is performed independently
for each input image even though the robot is physically
constrained to only move from one place to another
infrequently so that there is a strong continuity bias
in the place label. Discriminative classifiers cannot, in
most cases, take advantage of this information though
it can be modeled generatively [53]. Instead, output la-
bel continuity is externally enforced through methods
such as Bayesian filtering [46]. Secondly, since classi-
fiers, particularly discriminative ones, are constrained
to only provide labels from the known label set, these
systems cannot flag a place category that has not been
previously encountered. This inability to signal an “un-
known” label results in incorrect output and poor per-
formance.
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Fig. 1: Maximum likelihood output labeling for the 1st floor image sequence from Home 3 of the VPC dataset, which is one of the
more difficult ones and contains 6839 images. Thumbnails (in the shape of thin “strips”) of original images, groundtruth labeling and
the PLISS result are shown. Note that it is possible to spot many of the changepoints from just the high-level image characteristics

visible here but not all of them.

In this paper, we present a novel system for place
categorization called PLISS, which stands for Place La-
beling through Image Sequence Segmentation. PLISS is
based on the observation that the place label does not
change at every measurement and works by temporally
segmenting image sequences into segments correspond-
ing to different place categories. We use changepoint
detection for temporal segmentation. Changepoint de-
tection, as it’s name suggests, is the problem of de-
tecting instants in time when the measurement model
characteristics undergo significant changes. If the mod-
eling is performed in such a manner as to make these
changes correspond to the robot entering and exiting
places, we can obtain a segmentation where each seg-
ment corresponds to a place category. This provides
a natural way of approaching the place categorization
problem and yields smooth output without the need for
additional filtering of the result.

It may be argued that a weakness of this method
is it’s dependence on a good temporal segmentation.
We address this issue by performing robust segmenta-
tion through changepoint detection within a Bayesian
probabilistic framework which systematically takes all
possible segmentations into account at each time step
and computes a posterior distribution over temporal
segmentations. This is done in an online manner so as
to be of practical use, i.e. we do not need the complete
image sequence for the changepoint inference. More-
over, unlike most cases involving Bayesian inference
over complex spaces, this inference can be performed
exactly and efficiently to obtain near real-time perfor-
mance. We also present a particle filter approximation
to the exact algorithm that further improves efficiency
without compromising on performance. The temporal
segments are labeled using place models learned offline
using training data. We use a Gaussian Process classi-

fier (GPC) [33] for this purpose since this also provides
classification uncertainty at the query point. We use
this uncertainty to flag the case of unknown labels in a
systematic manner. We demonstrate that this provides
a scalable technique for handling the unknown label
problem.

Hence, PLISS elegantly overcomes the disadvantages

of discriminative classifier based systems mentioned above,

i.e.

1. PLISS is temporally consistent: Since PLISS is based
on labeling segments of image sequences obtained
using changepoint detection, it is inherently tem-
porally consistent without the need for additional
filtering or smoothing methods. Further, the change-
point detection itself performed in a systematic man-
ner like than in an ad-hoc manner.

2. PLISS handles the unknown label problem: PLISS
is not constrained to classify the input into the pre-
determined place category set and can detect sce-
narios where the place category is unknown

While a few existing generative methods also have the
two advantages mentioned above, PLISS is also com-
putationally efficient and can operate very close to real
time in practical scenarios, as we demonstrate in our
experiments.

We model images using histograms of dense SIFT
features. The image histograms are used as measure-
ments in the changepoint detection procedure wherein
we use the Multivariate Polya distribution as the mea-
surement model. The multivariate Polya distribution,
also known as the Dirichlet Compound Multinomial
(DCM) model [25], is a bag-of-words model previously
used for document modeling. It captures burstiness of
the data, i.e. it models the observation that if a word
occurs once in a document, it usually occurs repeatedly.
Unfortunately, the DCM model cannot be updated in-
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crementally, and hence we provide an efficient Gaus-
sian approximation based on projecting the high di-
mensional DCM model into a low dimensional space.
The image histograms are also used to learn the GPC
place models.

We present extensive experiments for validating PLISS

on the Visual Place Categorization (VPC) dataset [46],
a large and challenging dataset collected from multi-
ple home environments. The labeling result from PLISS
on one of the sequences of the VPC dataset is shown
in Figure 1. We also present results using place mod-
els learned from images obtained from Google’s image
search using the place label as the keyword, the ad-
vantage being that no knowledge of the operational en-
vironment is necessary during training. This problem
represents a higher level of difficulty than learning place
models from similar environments, and provides a big
step towards the practical use of place categorization.
We present comparisons against other algorithms and
runtime results for PLISS.

The major difference between this work and our
prior work on PLISS [31] is that we no longer use Mul-
tivariate Polya models for both changepoint detection
and place modeling. Instead, place modeling is per-
formed using a Gaussian Process classifier (GPC) and
we utilize the uncertainty estimate provided by the GPC
for detecting the unknown label case. The advantage
is increased classification performance and scalability
with number of place labels. This is so because the
Multivariate Polya model is more suited for cluster-
ing rather than classification and does not generalize
well when class overlap is present. In addition, our new
technique for detecting the unknown label case is much
simpler, faster, and scales better than statistical hy-
pothesis testing based on the Multivariate Polya model,
which we used previously. We also present a more effi-
cient approximation to the changepoint detection pro-
cedure based on projecting down the high dimensional
Multivariate Polya measurement model to a low dimen-
sional subspace. Finally, we present significantly more
experiments and comparisons on challenging datasets,
including results from learning place models on images
obtained from web searches.

2 Related Work

Place categorization has received extensive attention
both in robotics and computer vision. In robotics, place
recognition and classification fall under the more gen-
eral areas of spatial reasoning [20] and semantic map-
ping for robots [49]. They also facilitate human-robot
communication [40]. Early work on place recognition
was confined to recognizing specific places rather than

categories. Typical approaches include matching SIFT
features across images [51] or matching other derived
measures of distinctiveness for places such as Fourier
signatures [24], subspace representations [15], and color
histograms [43]. These methods have the disadvantage
of not being able to generalize and also need to use om-
nidirectional cameras to achieve invariance to perspec-
tive. Approaches that generalize well usually learn clas-
sifiers, involving SVMs or boosting, for each place from
labeled data [35,39]. A very recent system by Prono-
bis et al. [30] focusses on merging cues from different
sensing modalities, the output for each of which is ob-
tained from individually trained SVMs. In contrast to
PLISS, these and similar discriminative classifier-based
approaches cannot detect or learn unknown places and
place categories.

Generative methods, of which ours is an instance,
can in principle detect unknown categories using out-
lier detection. Outlier detection has been used in [53],
where it is called a bail-out test. Our previous work
[31], which used hypothesis testing for detecting new
categories, is similar in flavor to that work. However,
in the current paper, we use Gaussian Process classi-
fiers for detecting outliers thus eliminating the need for
hypothesis testing.

While so far we have discussed only the use of fil-
tering as a way to impose the temporal continuity con-
straint, a number of other two-tier methods are pos-
sible. For instance, in Posner et. al [54], a clustering
method is used to create these constraints, which are
not only temporal in this case but can also link tem-
porally non-sequential frames. Similarly, segmenting a
space into regions based on domain-specific cues such as
doors [30], can also considered to be a domain specific
version of changepoint detection.

Place classification methods based on laser and sonar
range scans also exist. Kuipers and Beeson [19] apply a
clustering algorithm to the laser scans to identify dis-
tinctive places while Mozos et al. combine features ex-
tracted from laser scans and camera images[26] to learn
boosted classifiers for place categories. Posner et. al
[53] use a Chow-Liu tree model for modeling individual
patches. The individual patch likelihoods are integrated
within a spatio-temporal MRF on image superpixels.

In computer vision, place classification is also known
as scene classification and image categorization. Two
broad methods can be discerned - those that model
local features [2], objects[32], and distinctive parts of
images[38], and those that extract global representa-
tions of images and learn from them. The latter is closer
to this work and hence, merits closer attention.

Spatial Pyramid Matching [21] introduced the use
of histograms of dense SIFT features computed at var-
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ious spatial scales for representing images. We utilize
the same image representation in this work. These his-
tograms are used to learn SVM classifiers which in-
corporate the histogram intersection kernel [17]. Wu
and Rehg [47] model images using quantized histograms
of census transform values. They term this the CEN-
TRIST representation and use these to learn SVM clas-
sifiers for place categories in their Visual Place Catego-
rization (VPC) system. Other global methods include
Bosch et al. [3], who learn a random forest classifier for
identifying place categories. The input to the classifier
is dense SIFT features. Oliva and Torralba [28] intro-
duced the gist of an image as a global feature for place
categorization. Gists are essentially histograms of image
gradients computed across the entire image. Fei-fei and
Perona [14] introduced a bag-of-words Bayesian gen-
erative model based on Probabilistic Latent Semantic
Analysis (PLSA) for recognizing scene categories. How-
ever, the SVM-based systems mentioned above have
since outperformed this system.

Place categorization, in the form of image classifi-
cation, is also an essential component of content-based
image retrieval. However, due to large image databases
and the need for fast retrieval, techniques thus far have
been limited to color and texture correlograms, and
similar simpler features [9]. Many hashing techniques
such as Semantic hashing [36] and Spectral hashing [44]
have been used for this purpose though they are not di-
rectly applicable to our scenario since supervised learn-
ing for place labels is not possible in these algorithms.

Changepoint detection has a long history in statis-
tics and the best-known technique is the CUSUM detec-
tor [29] which involves modeling the time series as piece-
wise segments of Gaussian mean with noise. Closer to
our application is segmented regression [11]. In our ex-
position, we closely follow the more general method of
[1] which is applicable to conjugate-exponential mod-
els. The particle filter algorithm we have presented is
also similar to [13] though a version that does not in-
volve Rao-Blackwellization (and hence is less efficient)
was presented in [7] first. Applications of changepoint
detection in computer vision range from video segmen-
tation [50] to robust visual tracking [42] to visual scene
analysis [5], though this is the first application to place
categorization to our knowledge.

3 Problem Setup

We formulate the place recognition problem as follows.
We are given a measurement stream with measurements
at some (possibly changing) intervals, which we will
also call as timesteps. For each measurement, we are
required to come up with a label corresponding to the
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Fig. 2: An explanation of how the changepoint inference is
parametrized: (a) Hypothetical data divided into 3 segments (b)
The value of the variable length c; used in our inference as a
function of time. c; is the length of the current segment and re-
sets to 0 when there is a changepoint. (c) The trellis showing all
the possibilities over which inference is performed. Solid lines in-
dicate an increase in the length of the current segment (the case
of no changepoint) while dotted lines indicate the possibility of
a changepoint at that time instant. Figures taken from [1]. The
horizontal axis denotes time in all three figures.

type of the place. The place types are given in the form
of L place models My, Ms, ..., M. We are also required
to say if the measurement does not correspond to any
of these labels.

We approach the problem by noting that the place
label remains the same for periods of time when a robot
is moving inside a particular place. It only changes spo-
radically when the robot travels into the next place.
Thus, the measurement stream can be segmented into
pieces corresponding to places, i.e. measurements in
each segment can be assumed to have been generated
by the corresponding place model.

We assume that a sequence of data y1,yo, ...,y can
be segmented into non-overlapping but adjacent seg-
ments. The boundaries between these segments are the
changepoints. We deal with the model-based change-
point scenario here, wherein the form of the probabil-
ity distribution in each segment remains the same and
only the parameter value changes. We assume that the
data are i.i.d within each segment and denote by c; the
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Fig. 3: Changepoint detection: (a) Univariate Gaussian input
data (blue/dashed) with segment means shown in black (b)
Groundtruth for changepoints shown as length of segments, which
is the variable ¢; used in our inference. (c) Output of change-
point detection which is probability distribution on c¢. Darker
shades mean higher probabilities and the representation is sim-
ply a shaded version of the trellis in Figure 2(c). The horizontal
axis in all the figures denotes time while the vertical axis in (b)
and (c) denotes current segment length. The corresponding axis
in (a) refers to magnitude of the measurements.

length of the segment at timestep (or index) t. Note
that ¢; is also the timesteps since the last changepoint.
If the current timestep is a changepoint then ¢; = 0
and if no changepoints have occurred yet then ¢; = t.
While computing the distribution over ¢;, we have to
counsider all the cases from ¢; = 0 (changepoint at cur-
rent timestep), ¢; = 1 (changepoint at ¢ — 1), and so
on up to ¢; = t (no changepoint so far). A illustra-
tive explanation of the ¢; variable is shown in Figure
2. A sample problem setup and output for changepoint
detection in the univariate Gaussian case in shown in
Figure 3.

We denote the place label at timestep ¢ as 7. The
place label is indexed by the current segment since the
whole segment has a single label. However, this label
is updated with each measurement, and hence the time
index t is also used. The probability distribution over
x¢ is taken to be a discrete distribution of size L, one
for each of the place models. The case where the place
label takes none of these values is detected separately.

We need to compute the joint posterior on ¢; and
x¢ given the data, p(ct, x§|y1.¢), where y;.+ denotes all
the data from timestep 1 to timestep t. The posterior
can be factored as

p(Ct,fEﬂyl:t) = p(0t|y1:t)p(xﬂctay1:t) (1)

The first term is the posterior over the segment length
while the second term is the conditional posterior on
the place label given the segment length. Note that the
posterior over segment length is equivalent to inferring
the changepoints since ¢; = 0 implies a changepoint.
Inference for the place label need not be performed at
each time step, especially if the segment length is large,
i.e. ¢ > C for some large C so that label inference
for the segment is likely to have stabilized. However,
since the label posterior is not guaranteed to remain

unchanged even if this is the case, we recommend peri-
odically computing it even at this stage.

We address changepoint detection, i.e. computing
p(ct|y1:) in the next section. Computation of the place
label posterior p(x$|ct, y1:¢) is explained in Section 6.

4 Model-based Online changepoint Detection

In the following exposition, we closely follow [1] and
[13], both of which state essentially similar algorithms
but with different state representations. We represent
the likelihood of the data in segment ¢; as p(y:|¢f) where
&7 is a parameter set. The data inside each segment are
assumed to be i.i.d and the parameters are assumed
i.i.d according to a prior parameter distribution.

The changepoint posterior from (1) can be expanded
using Bayes law as

plcelyre) o< p(yelce, yre—1)p(celyre—1) (2)

The first term is the data likelihood while the second
term can be further expanded by marginalizing over
the segment length at the previous timestep to yield a
recursive formulation for ¢;

pletlyre—1) = ZP(Ct|0t71)p(0t71\y1:t71) (3)

Ct—1

where p(c¢|ci—1) is the transition probability, p(ci—1|y1.t—1)

is the posterior from the previous step, and we have
made use of the fact that ci,cs,..., ¢ form a Markov
chain.

4.1 The Transition Probability

For characterizing the transition probability p(c:|ci—1)
in (3), we note that the only two possible outcomes are
¢t = ¢;—1+ 1 when there is no changepoint at time step
t, and ¢; = 0 otherwise. Hence, this is a prior proba-
bility on the “lifetime” of this particular segment where
the segment ends if a changepoint occurs. In survival
analysis, such situations are routinely modeled using
a hazard function, which represents the probability of
failure in a unit time interval conditional on the fact
that failure has not already occurred. If H(.) is a haz-
ard function, the transition probability can be modeled
as

H(Ct_l +1) if C =0

. (4)
1—H(ci—1+1) ifep=c—1+1

pleelei—1) = {
In the special case where the length of a segment is
modeled using an exponential distribution with time
scale A, the probability of a changepoint at every step
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is constant [13], so that H(¢) = 1/A and the transition
probability is simply

1 .
by lfCtZO
ctlei—1) = 5
plerle1) {1—; ifep=ci1+1 ®)

The justification for using a uniform prior on change-
points is that apriori we truly cannot have any expec-
tations regarding the time spent by the robot in any
specific place. If the robot simply peeks into a place
and moves away, we get a very short interval between
changepoints while the opposite case where the robot
stays in one place for a very long interval is also quite
possible. A prior which reduces the chances of a change-
point occurring at a particular time instant risks af-
fecting the result if this expectation is invalid. Instead,
by keeping a constant changepoint probability at each
timestep and letting the measurements decide the ac-
tual changepoint occurrence, we avoid such a risk.

4.2 The Data Likelihood

The data likelihood from (2) can be calculated only if
we know the distribution parameter to use. Hence, we
integrate over the parameter value using the parameter
prior

p(ytles, yre—1) = /5 (Y| p(E° e, yE 1) (6)

where £¢ is the model parameter for segment c¢;, and
ys_, is the data from the current segment. The above
integral can be computed in closed form if the two
distributions inside the integral are in the conjugate-
exponential family of distributions. Expensive numeri-
cal integrations have to be employed otherwise. In the
following exposition, we assume the conjugate case.

While we call (6) the likelihood of y; in keeping with
our formulation of the problem, it is in actuality the
predictive posterior distribution of the current segment
since the second term inside the integral is the poste-
rior distribution on parameters for the current segment.
The intuition for our changepoint detection algorithm
can be seen from this relationship. If the predictive pos-
terior for the current segment yields a low value for the
current measurement, it is likely that a changepoint
has occurred. On the contrary, if the prediction for vy,
is good, it implies a continuation of the same segment
and the same parameter regime.

Now, further, let the integrated function from (6)
be denoted as p(yi|ct,nf) where nf parameterizes the
integrated predictive posterior. Even though this func-
tion is usually not in the exponential family, it may be
possible to update it directly using the sufficient statis-
tics of the data corresponding to the current segment

{yf_1,u}, i.e. the integration need not be performed
at every step. In the case where ¢ is a changepoint, the
function is computed with prior values for 7 (since
¢t = 0) instead of any sufficient statistics.

4.3 Computational Cost

The algorithm described so far is exact. After n mea-
surements, the possible segment lengths range from 0
to n, and the posterior contains the probability of all
these cases. Further, if the optimal changepoint loca-
tions are also needed, the posteriors from all timesteps
have to be kept. Hence, the runtime and memory costs
per timestep are O(n) while the total memory cost is
O(n?). These requirements are incompatible with long
term online operation. A simple solution is to discard
segments with probability less than some small num-
ber e from the posterior after each step. This reduces
the memory and runtime costs but does not address
the worst-case scenario wherein these costs remain the
same as before. Hence, we next provide a simple and
intuitive particle filtering approximation that exhibits
constant runtime and O(n) total memory cost.

4.4 Online operation using particle filtering

We need the locations of changepoints and the exact
algorithm above accomplishes this by maintaining the
posterior over segment lengths c¢; for all ¢t. We now
approximate the posterior using N weighted particles,

thereby obtaining a constant runtime algorithm.
Combining (2), (3), and (4) we get the segment
length posterior as

wt(o) th_l H(ci—1 + 1)pe—1 ifcg =0

P(Ct|y1:t) o {
(7
where the particle filter weights are given by

w = plydles, yi_y) ®)

and, for the case where ¢ is a changepoint and yf_; is
the empty set, wt(o) = p(yi|es,n'?), with n© being the
prior parameter value of the integrated likelihood (6).
pt—1 = p(ci—1|y1.t—1) is the posterior from the previous
timestep.

Clearly, the posterior (7) is amenable to straight-
forward use in a particle filter with w; as the parti-
cle weights. We use the optimal stratified resampling
method of [12] that ensures runtime and memory us-
age proportional to the number of particles, i.e. O(1)
with regard to number of measurements seen so far.
The particle weights are given by (6).

wY,, {l-H(ea+Dip ifer=c1+1
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Fig. 4: The Spatial Pyramid histogram: Histograms of clustered
SIFT features, computed on image regions at different spatial
resolutions, are concatenated to yield the representation of the
image. The image regions are obtained by dividing it into succes-
sively finer grids.

Note that since the likelihood parameters £¢ in (6)

are integrated out, this particle filter is Rao-Blackwellized

[4] and has lower variance than a standard particle fil-
ter. This also makes the convergence of the algorithm
more efficient.

5 Changepoint detection for video sequences

We model images using a “bag of words” model wherein
a histogram is used to represent the image. These his-
tograms are also used as input measurements to the
PLISS algorithm. First, in an offline phase, SIFT fea-
tures are computed on a dense grid on each of a set
of images. The features are vector quantized using K-
means to create a codebook of pre-specified size. Note
that it is not necessary in this step for the image set
used to be similar to the test images, though better
results are obtained if this is true.

We compute a spatial pyramid [21] from the quan-
tized SIFT features and this is used as input to the
changepoint detection algorithm. The spatial pyramid
is obtained by computing histograms of feature frequen-
cies at various spatial resolutions across the image. The
histogram bins contain the number of features in each
of the codebook clusters in the image region under con-
sideration. Following [21], we obtain successive spatial
resolutions by diving the image into a grid as shown
in Figure 4. Note that only the histograms at the finest
resolution need to be computed since the coarser resolu-
tion histograms can be obtained by simply adding the
appropriate histograms at an immediately finer level.
All the histograms from the different grids are then con-
catenated to yield the spatial pyramid representation.
The two parameters for computing the spatial pyra-
mid are thus, the number of levels in the pyramid V'
and the number of clusters computed in SIFT space
(size of the dictionary) K. SIFT features only have lo-
cal information about an image patch while an image
histogram only has global information. By combining
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Fig. 5: Graphical model illustrating the Multivariate Polya distri-
bution. To obtain a measurement z, which is a quantized feature
histogram, we first sample from a Dirichlet distribution with pa-
rameter « to obtain a Multinomial vector € . This Multinomial
distribution is, in turn, sampled to obtain the measurement his-
togram y. Note that a different 6 has to be sampled for each y.
Each o roughly corresponds to a place category.

S

both of these at different scales, the spatial pyramid
obtains more fine-grained discriminative power.

5.1 Multivariate Polya measurement model

A measurement model is required to compute the mea-
surement likelihood in (6). Since the measurements are
histograms of word counts, we model them using a
multinomial distribution having dimensions equal to
the dictionary size. Further the prior over the multi-
nomial parameter is the Dirichlet distribution, which
is the conjugate prior and simplifies the computation.
Given a histogram measurement y;, its likelihood ac-
cording to (6) is

Pyl cr) = /9 P [0)P (8], cr) (9)

where 0 = [01,02,...,0w] and o = [a1,aq, ..., aw] are
the multinomial parameter and Dirichlet prior respec-
tively, and W is the dictionary size. Assuming that the
histogram y; has bin counts given by [n1,ns,...,nw],
the distributions in the integrand above can be written
as

n!

p(y:l0) = 101057 . 0" (10)

nl'ng'nw

F(Zwﬂ Cw) oy 1 pas—1 -1
p(Ola,ct) = 207" 02T L0y (11)
The likelihood model in (9), where P(y;|0) is a multi-

nomial distribution (10) and P(f|«,c;) is a Dirichlet
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distribution (11), is called the Multivariate Polya model
[25], or equivalently in document modeling, the Dirich-
let Compound Multinomial (DCM) model [22]. The
DCM distribution models burstiness in the data, i.e.
given that a quantized feature appears once in a doc-
ument, it is much more likely for it to occur multiple
times rather than just once or twice. This is an assump-
tion that intuitively holds for all realistic image data,
particularly since we are dealing with densely computed
features.

Note that, since we are using spatial pyramids as
input, it is only required to model the histograms at
the finest level using the Multivariate Polya model since
the coarser level histograms are simply summations of
these. Thus, for a pyramid with V levels and level V = 0
denoting the whole image, the dimensionality of « is
just W even though the spatial pyramid histogram itself
has dimension 4" W.

Performing the integration in (9), we get the final
form of the likelihood as

n! I(le) v Ilne + aw)
uaTaACET B | Sy

w=1 "w

P(yila, i) o

12)

where n = > nw, o] = >, aw, and I'(.) denotes
the Gamma function. Graphical intuition for the DCM
model is provided by Figure 5. If the likelihood of a set
of measurements is to be computed, then n is taken to
be the total counts across all measurements, while n,,
is the total count for a particular word, or in our case,
a specific dense SIFT cluster.

Given the set of D histogram measurements con-
tained in ¢; , the maximum likelihood value for « can
be learned by using iterative gradient descent optimiza-
tion. It can be shown that this leads to the following
fixed point update for the o parameter|[25]

new __ @ ZdDzl w(ndw + Oéw) - 1/J(04w)
v S G(naw + o) — 9 (|a)

where |a| =) o, as before, and ¢(.) is the Digamma
function, the derivative of the Gamma function. Faster,
but more complicated, updates using Gauss-Newton it-
erations also exist [25]. For new segments, we start the
iterations with a prior value ag, which we compute as
the maximum likelihood « value of the whole training
set.

We use the DCM distribution as the measurement
model to compute the likelihood (6), and the « param-
eter is also updated after each measurement using the
iterative rule (13) or the slightly faster Gauss-Newton
updates. Thus, we only deal with (12) and do not need
to perform the integration of (9). The iterative solution
for a can be initialized using the previous value of « at
each step so that convergence is usually fast. However,

«

the calculation is still not incremental in nature as it
requires all the segment data at each step. Hence, we
see a O(n) time complexity for the a parameter update,
albeit with a very small constant factor, where n is the
length of segment so far. Also, the computation of the
digamma function itself is relatively slow.

5.2 A fast Gaussian changepoint algorithm

We overcome the relatively high amount of computa-
tion needed for using the Multivariate Polya distribu-
tion as the measurement model by projecting the mea-
surement histograms to a low dimensional space and
modeling them using a multivariate Gaussian distri-
butions. The theoretical justification for doing this is
provided by the seminal result of Diaconis and Freed-
man [10], who showed that most high dimensional data,
when projected down to a uni-dimensional space, fol-
low a Gaussian distribution. This can also observed in
practice by noting that many low dimensional data col-
lections follow Gaussian distributions (heights of men,
birth weights of babies etc) while high dimensional dis-
tributions are rarely Gaussian. This is mainly because
Gaussianity demands a high degree of independence be-
tween variables (a Gaussian is simply a rotated ver-
sion of a distribution with independent coordinates)
[8]. This independence is easily obtained if the num-
ber of variables is very small but becomes progressively
harder as the number of variables become larger since
it is highly likely that these variable also depend on
each other. Diaconis and Freedman only proved their
result for uni-dimensional projections though this has
been extended to small multi-dimensional spaces re-
cently [27]. While the exact conditions required for the
low-dimensional projections to be Gaussian are hard to
verify in our case, we find that this assumption works
in practice, as we also demonstrate in our experiments.

We project measurements into a low dimensional
space by normalizing the spatial pyramid histograms
by the total number of features in the image and us-
ing Principal Components Analysis (PCA). The PCA
projection subspace is learned offline using some train-
ing images which can be the same as the ones used
to compute the SIFT clusters for computing the spa-
tial pyramid histograms. In practice, we use a 5 to 10
dimensional subspace for projecting down the measure-
ments.

Assuming the projection is to a d-dimensional space,
the likelihood (6) can be written using a multivariate
normal measurement model as

P(y]6) = / POl )P (s, 510) (14)
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where © are the prior parameters for the multivariate
normal distribution, and g and X are the mean and
covariance matrix respectively. We use conjugate prior
distributions for the unknown mean and covariance pa-
rameters. The standard distributions used for this pur-
pose are a multivariate Gaussian on the mean and an
inverse-Wishart distribution, a multivariate version of
the Gamma distribution, on the covariance

p(X) = Inv-Wishart(X| Ao, v)
X
p(ulX) =N <u;uo, >
Ko

and © = {Ap, v, o, Ko} is the prior parameter set. We
have not given the expressions for these distributions
since they are quite involved, especially the inverse-
Wishart distribution, and can be looked up easily from
any standard reference, for instance [16], pg. 85. The in-
terpretations of the prior parameters are intuitive and
again can be found in standard references.

Due to the conjugacy, the integration of (6) can be
performed analytically to yield the predictive posterior
distribution as a multivariate Student-t distribution

Ay (kn +1) )

K (Vn —d+1) (15)

P(Yt|©, ct) = tu, —ar1 (Mm

where
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n
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with n being the length of segment thus far (n =¢;) , S
being the scatter matrix S = >0, (v; — ¥) (yi — e
and g is the data mean. By maintaining a few statis-
tics, this predictive posterior can easily be updated in-
crementally so that the changepoint algorithm in this
case is much faster than when using the Multivariate
Polya distribution. Evaluating the Student-t distribu-
tion of (15) can also be performed faster than in the
Multivariate Polya case since no digamma evaluations
are necessary.

6 Inferring the Place Label

We now turn our attention to the task of computing
the place labels given the changepoint posterior which
contains the distribution over temporal segments. From
(1), the conditional posterior on the place label is
p(xfler, y1.e) = p(af|ys), which we directly model using
Gaussian Process Classifiers (GPCs).

We use Gaussian Process classifiers (GPC) as place
models. In our prior work [31], we used Multivariate

Polya models as place models in addition to using them
for changepoint detection. However, these models are
more suited to clustering rather than classification and
results degrade if the place categories share similarity
or overlap due to too much intra-class variation. This
is particularly true as the number of classes increases.
GPCs, on the other hand, are maximum margin clas-
sifiers that are capable of finding decision boundaries
even in difficult high-dimensional scenarios such as ours.

The GPC classifies each image in the current seg-
ment individually. The label distributions obtained for
each of the images are then averaged to obtain the label
distribution for the segment

t

1
plailys) = — > plarlyr) (16)
t T=t—cs+1

where p(xr|yr) is the classification result from the GPC
for a single image yr (the conditioning on the training
images has not been shown for simplicity). If we have L
place models, the GPC classification result is a discrete
probability distribution with L components, and these
are averaged as shown above in (16).

While a product of the individual image probabili-
ties would be the theoretically accurate way to obtain
the segment label distribution in (16), we find the above
to be more robust in practice. This so called “summa-
tion hack” has been used in many other areas and some
theoretical justification also exists for it’s better perfor-
mance [55].

We use Spatial Pyramid histograms (SPH) com-
puted as explained above in Section 5 as input to the
GPC. However, since the dimensionality of the histograms
is extremely high, we first project it down to a lower
dimensional subspace using PCA, selecting the dimen-
sionality of the subspace so that most of the variance in
the training dataset is captured. Empirically, we have
found that for a two level histogram using 400 clus-
ters (dimensionality 2000), a 50 dimensional subspace
suffices in almost all cases.

6.1 Gaussian process classifiers as place models

A Gaussian Process is a distribution over the space of
functions such that the joint distribution over any col-
lection of data points is a Gaussian. GPs can be viewed
as probabilistic kernel machines, and hence, can pro-
vide not only a mean value prediction but also the un-
certainty measured in terms of standard deviation for a
test sample. A large standard deviation signals the ab-
sence of any training data in the neighborhood of the
test sample, and provides an indication of poor gener-
alization.
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For performing classification, we assume the avail-
ability of NV inputs y = {y1.n} and corresponding train-
ing outputs t = {t1.x5}. The covariance function of the
GP is then given by the N x N Gram matrix K(y,y).
Typically, the kernel function has a number of parame-
ters A, which are also called the hyperparameters of the
GP, that have to be learned using the training set. We
use the following commonly used kernel function

d
K(y,y') = voexp {‘; ;’w (yi — yé)Q} +or o (17)
where d is the dimensionality of the training inputs and
6 = {logwg,logvy,logws,...,logwy} are the parame-
ters to be learned from training data.

For performing multi-class classification using GPCs,
we closely follow the exposition of Williams and Barber
[45] and also use their method in our implementation.
Classification is performed by passing the continuous
regression output of the Gaussian Process through a
soft-max transfer function so that it can be interpreted
as the probability of the input belonging to one of m
classes. The continuous output of the GP is called the
activation at the input value. We use one GP per class
label, denoting the input as y; and activation as z{ for
class c. The probability of belonging to the cth class,
denoted by 7{, is thus given by

exp Ty
S expaf
The Bayesian prediction distribution for an activa-

tion value x* , whose corresponding input is y*, is given
by

pumaz/fmﬁﬂww

= Flt) /p(ﬂc*, x)p(t|x)dx
where x are the activations corresponding to the train-
ing data. For a GP, the joint distribution on training
data and query point activations is a Gaussian distribu-
tion with covariance function given by the Gram matrix
on the set {y,y*}. We only consider GPs having mean
zero in this discussion as this is sufficient for our pur-
poses. The error model p(t|x) is the multinomial distri-
bution of (10).

It is not possible to perform the integration in (19)
analytically. Following [45], we use the Laplace approxi-
mation which centers a Gaussian around the maximum
of the distribution with the inverse covariance given by
the negative Hessian (second derivative matrix) of the
integrand p(z*,x|t). Since the likelihood is a multino-
mial distribution, the log-likelihood of the training data
is L=, .tfIn7f, where t{ is the probability of the

2

c __
my =

(18)

(19)

ith training instance taking on class ¢. Using (18), we
get the log-likelihood as

L= th (mf - anexpwf)
i,c c’

Computing the Laplace approximation can be accom-
plished using a series of Gauss-Newton steps and is no-
tationally complex but straight-forward otherwise. We
refer the reader to [45] for the details.

The GP parameters 6 are also obtained using a max-
imum aposteriori method where the posterior to maxi-
mize is

p(618) o< p(t]6)p(0)
=/famm@wmme

The first term of the integrand is the likelihood (20)
while p(x|0) is simply the GP prior involving a zero
mean Gaussian with the Gram matrix as the covariance.
We again use Laplace’s approximation on the integrand
and perform the integral analytically subsequently. The
optimization to obtain the Laplace approximation is
even simpler than the previous case and we omit the
details again.

The parameters 6 are learned during training time
and the predictive distribution (19) is evaluated for
each input at runtime. Since this evaluation involves
a Laplace approximation, it is relatively slow. However,
since we do not expect place categorization to be re-
quired after every step the robot takes, this system is
still suitable for online operation.

For each segment provided by the changepoint de-
tection algorithm, we find the place label by jointly clas-
sifying all the measurements in the segment using (19)
and (18). This provides more robustness than classi-
fying single measurements as in a single SVM, since in
effect, the label probabilities are obtained by votes from
all the measurements from the segment so that a few
individual misclassifications can be tolerated without
affecting the segment label.

(20)

7 Unknown place category detection

Detection of an unknown place requires more involved
calculation. We previously used statistical hypothesis
testing for this purpose [31]. Hypothesis testing is used
to show that the data does not arise from any of the
models corresponding to known places. At each timestep,
L hypothesis tests are performed with each of the L
place models to determine if the data arises from a
known place. However, hypothesis testing is not scal-
able with increasing number of place labels and can only
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Fig. 6: Hard to categorize inputs (also called perplexing inputs)
are close to the margin, i.e. have a small activation value z*
and/or have a large GP uncertainty due to being far away from
training data. In the figure, these regions are shown in purple.

be used with probabilistic models such as the Multi-
variate Polya models used in [31]. As mentioned before,
these models do not yield good classification results in
difficult environments.

In this work, we take a different approach to detect-
ing unknown places based on the uncertainty provided
in the GP output. Firstly, note that the activation of
the GP for an input is proportional to the distance to
the margin of the classifier, the margin being the clas-
sification boundary in kernel methods. Inputs that are
close to the margin are harder to classify for the GP
while inputs far away from the GP on either side of
the margin can be confidently classified. This is similar
to a SVM. However, in a GP, we also obtain a large
covariance, and hence a low likelihood of the correct
classification, when the test point is far away from any
training point. Thus, we can say that measurements
from unknown place categories will generally either lie
close to the margin or far away from any training data.
This is illustrated in Figure 6. The covariance of the
activation value is obtained through the Laplace ap-
proximation, which gives the inverse covariance as the
negative Hessian of the integrand in (19).

We detect unknown places using both the activa-
tion value and the covariance provided by the GPC. In
particular, we use the perplexity statistic

* x*

N (21)
where z* is the activation value as before and X* is the
associated covariance value. Note that p* has small val-
ues for difficult inputs. This has previously been used in
the context of active learning in computer vision to de-
tect and learn perplexing examples which the classifier
is having trouble labeling [18].

We compute the perplexity statistics for misclassi-
fied training examples and also calculate their mean
and variance. Note that since p* is small for difficult
examples, finding the average over the whole training
set would bias the value upwards. We set as threshold
the value

t* = pj, — 20 (22)

av

where p’  is the average perplexity of the misclassi-
fied training examples and o, is their standard devia-
tion. During runtime, any test instance having perplex-
ity value less than t* is classified as an unknown place
category. We only set the segment label to be unknown
if a majority of the test instances in the segment have an
unknown place category. In such a case, the probability
of the unknown place category is set apriori to a distri-
bution for unknown places p(z|new label). This distri-
bution should reflect our knowledge that the segment is
more likely to correspond to a new label than to one of
the known ones. We do this by setting p(z|new label)
such that the probability of the new label is twice the
probability of the other known classes. However, vari-
ous other choices (such as setting p(z|new label) = 0.9)
are also possible.

In terms of implementation, we augment the change-
point algorithm described in Section 4 so that the dis-
crete distribution on places is stored with each segment
c¢. Similarly, in the particle filter, each particle main-
tains a place distribution. The place distribution gen-
erally becomes increasingly confident as the length of
the segment c; increases and is robust to noisy measure-
ments and outliers. However, since it is also recomputed
with each measurement, the algorithm does not make
any irrevocable decision with regard to the place label
and can “change its mind” given enough evidence. The
cost of updating the place distribution is linear in the
number of labels and hence, does not affect the runtime
of the changepoint algorithm.

A recap of the overall PLISS algorithm using the
GP classifier for place models is given in Algorithm 1.
This algorithm uses the Dirichlet Compound Multino-
mial (DCM) model but the changepoint detection part
can similarly be computed using the Gaussian ansatz
as explained in Section 5.2.

8 Experiments

We present extensive experiments probing the various
parts of the PLISS system and comparing it with an-
other state of the art method. Unless noted otherwise,
all results were obtained using 50 particles in the par-
ticle filter approach. The A parameter in the transition
probability (5) was set to 20 based on cross validation
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Algorithm 1 Particle filtering algorithm for PLISS us-
ing the DCM (aka Multivariate Polya) model and Gaus-

sian Process classifier
1. Initialize: Set prior parameter og to be the maximum likeli-
hood value of the DCM parameter on the training set. Learn
a GPC on the training set. For all particles, co = 0 and
z) = unif (unif. dist. over known labels). Learn perplexity
threshold t*.
2. Update particle set:
For every timestep ¢ do -
For every particle containing weight, segment length, label
distribution, and DCM parameter {w_1,c¢—1,%5_1,af_ 4}
do
— Create two new particles (1) No changepoint case
It = {we—1,c0-1 + 1,25, af_;} (2) changepoint Iz =
{wg—1,0,unif,af 1}
— Compute the prior for the (4) and update weights of [;
and l2
— Using y¢, learn new parameter «f for /1 using (13) and
set parameter o for Iz to ap
— Compute incremental weights for [; and l2 using particle
weight definition (8) and DCM likelihood function (12)
and multiply with particle weights

3. Resample from weights to get new set of particles
4. Update place distributions:
For every particle {w¢, ct, z{_,, a5} do
— Compute the perplexity statistic for each test instance
in segment and determine if segment is unknown place
category
— If yf is from an existing place category, compute ={ using
(16)
— If y¢ is from an unknown place, create new place label
and set z§ to the prior distribution p(z|new label)

performed on a subset of the training data. For using
the Gaussian changepoint algorithm, the spatial pyra-
mids were projected down to a 10-dimensional subspace
before modeling using a multivariate Gaussian distri-
bution. The initial mean and covariance, which are the
priors for the multivariate Gaussian distribution, were
computed from all the training data. The prior parame-
ter for the DCM model was also similarly computed. We
implemented the system in Matlab with key portions,
such as k-means clustering for computing the SIFT vi-
sual words, performed in C. All timing results are ob-
tained by running the system on a Macbook Pro laptop
with 8 GB RAM.

SIFT features were computed in all cases on a grid
having distance 2 pixels between nodes in both x and
y directions. Features were computed on 16x16 image
patches. The features were clustered to obtain a dic-
tionary of size 1024. We used a three-level pyramid to
compute the spatial pyramid histogram in all cases.

miﬁ
Lﬁﬂ
Fig. 7: Some examples of image frames from the VPC dataset.

Note the image at top center showing a door and a wall, which
is impossible to categorize as anything other than “unknown”.

8.1 The VPC Dataset

We use the VPC dataset [46] for almost all our exper-
iments. The dataset consists of image sequences from
six different homes, each containing multiple floors. The
data is grouped into image sequences from the floors
and the image set from each home consists of between
6000 and 10000 frames. In our experiments, we con-
sider sequences from each floor to be a different image
sequence. The dataset has been manually labeled into
categories to provide ground truth for the place cate-
gorization problem. Five categories are present in all
the sequences and hence, we only use these labels in
our experiments. This also helps facilitate comparison
against [46]. In addition, a “transition” category is used
to mark segments that do not correspond clearly to any
one class. The VPC dataset is especially difficult since
no effort has been made to keep all the images in the
sequence informative. Thus, a number of images con-
tain only a wall, which is something that could also
be expected when a robot is moving around. This is
illustrated in Figure 7 through some images taken at
random from the dataset.

8.2 Implementation of the VPC algorithm

We implemented the VPC system of [46] which uses
CENTRIST features and provides a reference bench-
mark for the VPC dataset. The system consists of a
naive Bayes classifier, the output of which is filtered
using Bayesian filtering. We now describe the image
representation used by the VPC system.

The underlying features used by the VPC system
is CENTRIST, which in turn is based on the census
transform [48]. The census transform is a local feature
computed densely for every pixel of an image, and en-
codes the value of a pixel’s intensity relative to that of
its neighbors. It was originally introduced for identify-
ing correspondence between local patches. The census
transform is computed by considering a patch centered
at every pixel. The transform value is a positive inte-
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ger that takes a range of values depending on the size
of the patch. For instance, a patch size of 3x3, where
there are 8 pixels in the patch apart from the central
pixel, yields transform values between 0 and 255 (2°8
values). This is equivalent to having a dictionary size
of 256 without the need for the clustering step. Com-
puting a histogram of these 256 values yields the CEN-
TRIST (census transform histogram) descriptor. A big
advantage of the census transform is that it is extremely
efficient to compute.

The image representation used by the VPC system
is obtained by dividing an image into 16 equal segments
on a 4x4 grid and computing a CENTRIST descriptor
for each segment. The descriptors for each segment ob-
tained on all the images of the training set are then
vector quantized using the k-means algorithm, i.e. we
obtain 16 CENTRIST codebooks, one for each image
segment. The CENTRIST descriptors are then replaced
by their corresponding cluster number, so that the final
image representation is simply a 16-dimensional vector,
each containing a number between 1 and K, where K
is the number of clusters in each of the codebooks.

For computing the census tranform itself, we used
patch sizes of 3x3 and 5x5. While the natural dictionary
size of 256 was used for the 3x3 case, we clustered the
census transform obtained from the 5x5 case to obtain
1024 clusters.

8.3 Changepoint detection

We evaluated the changepoint detection by comparing
the changepoints detected by the algorithm with the
groundtruth in the context of our application, i.e. the
time instants when the robot enters or exits a particular
place or place category. A subset of the VPC dataset
consisting of six image sequences (sequences from six
floors of homes) and containing a total of 14,346 frames
was used for the evaluation. Changepoints were taken to
be video locations where place label changes are marked
in the groundtruth labeling of the dataset. The total
number of changepoints in these sequences, thus de-
fined, was 76.

Note that, by definition, the algorithm is trying to
detect changepoints as locations where the parameters
of the model undergo a drastic change whereas the
groundtruth defines changepoints as corresponding to
changes in place label. Hence, this experiment provides
a direct test of the effectiveness of our modeling of the
place categorization problem. In this context, it is more
important for the algorithm to detect locations where
the label changes than to avoid spurious detections.
This is because a missed detection (false negative) cre-
ates a data segment wherein measurements arising from

False False

& Positive | Negative by
SIFT 65 5 Il 85.5
CENTRIST
Sl se N 20 | 737
CENTRIST
) 59 5 17 77.6

Fig. 8: Changepoint detection performance for PLISS using var-
ious types of features

Correct P::i:-si:e N:;':I:vc % Correct
Multivariate
Polya'model 65 5 I I 85.5
Gaussial
model 65 6 I 85.5

Fig. 9: Comparison of changepoint detection performance with
Multivariate Polya model and it’s approximation using the low
dimensional multivariate Gaussian distribution.

two types of place labels have been conjoined, which
can lead to a large segment of input being misclassi-
fied. On the contrary, if the algorithm even wrongly de-
tects a changepoint at each frame in the worst case, it
will only default to frame-wise classification. Thus false
negatives in the changepoint detection affect the per-
formance of the place categorization more drastically
than false positives.

The changepoint detection performance using var-
ious features is shown in Figure 8. SIFT-based image
pyramids yield better results than CENTRIST features
with underlying census tranform computed on 3x3 and
5x5 patches. All the systems were based on the Multi-
variate Polya model and a changepoint was declared to
have been found if a system fired within 20 frames of
the groundtruth, which is about 2 seconds of latency at
the experimental frame rate.

Contrary to what we have stated above, the num-
ber of false negatives is higher in all cases in Figure 8.
This is because a number of the manually marked label
changes correspond to short “transition” regions when
the robot is moving from one room to another. However,
in many instances, our algorithm skips these transition
segments and only detects a single changepoint for the
motion of the robot from one room to the next. To state
this more concisely using an example, the groundtruth
is marked as “living room -> transition -> bedroom”,
thus giving us two changepoints, while our algorithm
only detects it as “living room segment -> bedroom
segment”. This can result in two false negatives and a
false positive in the worst case. Finally, we note that
many of the changepoints, especially involving “transi-
tion” regions, are difficult even for a person to recognize
as such and can depend on individual judgement.
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A comparison of the changepoint detection results
using the Gaussian model versus the Multivariate Polya
model is given in Figure 9. A 10-dimensional subspace
was used in the Gaussian case and dense SIFT feature-
based spatial pyramids were used in both cases to rep-
resent the images. It can be seen that the results are al-
most identical, proving that our projection into the sub-
space does not lose any vital information, and nor does
the modeling using the Gaussian distribution as op-
posed to the much more complex high-dimensional Mul-
tivariate Polya model. The average runtime per frame
was 0.07 and 0.63 seconds using Gaussian and Multi-
variate Polya distributions respectively. This validates
our claim that use of the projected Gaussian distribu-
tion for changepoint detection improves efficiency with-
out affecting performance. Note that the runtimes are
only for the changepoint detection and do not include
place labeling using the Gaussian process classifier.

8.4 Place categorization with and without changepoint
detection

We now provide results from our experiments on the
complete VPC dataset. We obtained results using the
leave one out strategy followed by [46] to facilitate com-
parison, i.e. the system was trained on labeled data
from five houses and tested on the sixth one. The place
categorization performance reported here is from the
average of having all six houses as the test case in turn.
Following [46], only five labels were used for the training
- kitchen, bedroom, bathroom, living room, and dining
room - and the “transition” label marking frames be-
longing to none of these place categories was omitted
from the classification results.

We first tested the effect of using changepoint de-
tection on the place categorization performance. For
this, we implemented a system that performs frame-
wise classification using a GPC in the manner described
in Section 6.1. The framewise output is then filtered
using a Bayesian filtering scheme. We call this system
"GPCHilt’.

Results of these systems are shown in Figure 10
which denotes the PLISS system using the Multivari-
ate Polya model as 'PLISS-MP’. Qur implementation
of the VPC system was unable to exactly replicate the
results of [46], as can be seen in Figure 10, possibly be-
cause of engineering issues in the implementation. How-
ever, the trends across label types still hold. GPC-filt
performs similar to the VPC system while PLISS-MP
performs significantly better than our implementation
of the VPC system and slightly better than the results
reported in [46]. An improvement of 2% is significant
since the variance of the averages was less than 0.2% in

Bedroom | Kitchen ';:’i": Bathroom 2:‘::\9 Average

Ve cvall 64.89 | 48.24 | 20.59 | 74.77 | 19.61 | 45.62
Ve | 61.31 148.09 | 18.74 | 72.62 | 18.22 | 43.80
(ileniliy 63.94 | 51.06 | 10.86 | 76.19 | 18.1 | 44.03
GEERY 67.29 | 53.32 | 12.90 | 79.86 | 20.89 | 46.85

Fig. 10: Effect of using changepoint detection for place categoriza-
tion of known places only. The top row gives the results from [46]
while the second row contains results from our implementation of
the same system. GPC-filt is the system using frame-wise GPC
classification without changepoint detection and PLISS-MP is the
PLISS system using the Multivariate Polya model for changepoint
detection. All numbers are percentages.

our experiments. Note that only the frames belonging
to the five categories were considered for computing the
classification accuracy. The classification numbers for
the “Living Room” and “Dining Room” are low because
these categories vary the most across image sequences
and are easy to confuse with others. This is in part also
because there are no distinctive objects in these cat-
egories as opposed to, for instance, the “Kitchen” and
“Bathroom” classes.

Since the only difference between PLISS-MP and
GPCHilt is the changepoint detection (they share the
same classifier and use the same features), we can at-
tribute the significant improvement in classification ac-
curacy to the use of changepoint detection. However,
the drawback of using changepoint detection is a slower
algorithm as compared to Bayesian filtering. Runtime
per frame for place categorization was 0.85 seconds for
PLISS-MP and 0.27 seconds for GPC-filt. However, this
runtime is not too high in absolute terms even when us-
ing changepoint detection, and could possibly be made
realtime with some optimizations and an implementa-
tion completely in C. We believe this is a small price to
pay for the consistently higher classification accuracy
and increased robustness.

8.5 Unknown place category detection
One of the main advantages of PLISS in relation to

most existing methods, including the VPC system, is
that it can detect unknown labels. For instance, there

are labels, such as “workspace”, “family room”, and “closet”,

which are present in only a few sequences of the VPC
dataset. The classifier in PLISS and the VPC system
do not know about these labels.

We quantified the ability of PLISS to detect un-
known places by training the VPC system on an addi-
tional category named “transition”, in addition to the
five classes shown in Figure 10. The “transition” class
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contains all the labels not belonging to any of these
five classes. Since this is a catch-all label with wide
variation, we do not expect a classifier-based system
such as VPC to perform well in labeling this class.
The PLISS system does not need to be trained on this
“transition” label as it is supposed to detect these as
an unknown category. We tested the PLISS system us-
ing both the Multivariate Polya model for changepoint
detection (PLISS-MP), and the Gaussian changepoint
model (PLISS-Gauss).

Training and testing on the VPC dataset were per-
formed similar to the previous section with training
done on sequences from five houses and testing per-
formed on the sixth one. Results were averaged across
six runs with each of the six houses taken as the test
set in turn.

Results of this experiment are shown in Figure 11.
Note that results for the VPC system from [46] do
not include the transition label since it is not detected
therein. Surprisingly, the performance of the VPC sys-
tem when trained on the “transition” class is much lower
than before. The naive bayes classifier underlying the
VPC system gets confused by the influx of a new cat-
egory with a large intra-class variation and it’s perfor-
mance decreases across the board. Indeed, many of the
frames marked as “transition” in the dataset actually
look into places belonging to the other categories as
shown in Figure 13. This causes confusion in the classi-
fier as the classes are no longer as clearly separated as
before, so that classification performance is affected.

In contrast, the results of the PLISS system remain
unaffected and are, in fact, the same as shown in Figure
10. The PLISS systems were deemed to have recognized
a segment as belonging to the transition label when
they labeled it as unknown. Thus, the PLISS systems
provide significantly better classification accuracy than
the VPC system even with the addition of the transi-
tion label in the average classification rate. These re-
sults provide strong validation for the soundness of our

Fig. 12: Confusion matrix corresponding to the PLISS-MP result
of Figure 11. All numbers are percentages.

Fig. 13: Images labeled “transition” in the VPC dataset that ac-
tually look into places of other categories. This makes learning a
classifier for the “transition” label very hard.

strategy for detecting unknown place categories, and
also for the usefulness and need for having this ability.
We believe that this ability for detecting unknown place
categories will be crucial for systems to be deployable
in practical scenarios.

A confusion matrix for the PLISS-MP system is
shown in Figure 12. Most misclassifications are given
a “transition” label. However, the “Living Room” and
“Dining Room” categories are often confused with each
other, and also with some of the other categories in
the case of the latter category. A significant percent-
age of these misclassifications occur when small video
segments, obtained due to false positives in the change-
point detection, are incorrectly classified.

8.6 Choice of image features

We evaluated the use of various low-level image features
inside PLISS to determine their effect on accuracy. For
this purpose, we implemented three flavors of PLISS
based on spatial pyramid histograms using dense SIFT
features, and the CENTRIST representation used by
VPC with census transform computed on 3x3 and 5x5
pixel image patches. Implementation details of these
features are given in Section 8.2 and at the beginning
of Section 8.
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Fig. 14: Effect of the choice of image features on classification
performance. All results (except the VPC system) have been ob-
tained using the PLISS-MP system. All numbers are percentages.

et

Living Room

Dining Room

Fig. 15: Examples of images obtained from Google image search
used for training place models.

Results on the VPC dataset for the PLISS-MP sys-
tem are given in Figure 14. We find that dense SIFT
performs best and the difference with the Census trans-
form based systems is significant. This is due to the
extremely succinct representation used by the VPC sys-
tem (a 16-dimensional vector for the whole image) which
contains much less information compared to the spa-
tial pyramid histogram. However, the results using the
CENTRIST representations are still equal to or bet-
ter than the corresponding VPC results in Figure 11.
This demonstrates that while the feature used by us
contributes a little to the improved result, the bigger
influence is due to the PLISS algorithm.

While [46] also has a comparison of SIFT versus the
CENTRIST descriptor, they create 16-dimensional de-
scriptors from quantized SIFT features in an analogous
manner to CENTRIST, and conclude that CENTRIST
is the better feature. However, our observation here is
that the spatial pyramid histogram, which was not used
in [46], is a better representation than CENTRIST in
the context of PLISS.

Fig. 16: Results from using place models trained on images ob-
tained from Google’s image search. Average classification per-
centage is obtained from six categories for PLISS-Gauss and five
categories for SVM-CP. All numbers are percentages.

8.7 Learning from Google Image data

We tested the PLISS system by obtaining training data
from the internet. This gives us a sense of how well the
system performs when training data is totally disparate
from test data. It also ensures that any hidden corre-
lations between image sequences in the VPC dataset
do not bias the classification results upwards. We ob-
tained 200 training images for each of the five classes
of the VPC dataset by simply typing the label in the
Google image search engine and downloading the re-
sulting images. We ensured that irrelevant images are
not present in the training set while not removing any
relevant image, i.e. no selection bias was present other
than to ensure that the image was of the particular
place category. We then trained the GPC classifier in
the PLISS system on this training set and tested on
all of the VPC dataset. A few representative images of
each of the categories are shown in Figure 15.

Results for PLISS-MP, PLISS-Gauss and VPC are
shown in Figure 16. Classification accuracies here are
much less than before due to the extreme difficulty of
the problem. However, our aim is to show that PLISS
still does something sensible in such scenarios. As ex-
pected, large portions of the test data are labeled as
unknown place category by PLISS-Gauss, which would
be the correct thing to do given the training data. The
VPC system was trained only the five relevant cate-
gories as obtaining training data for a “transition” cat-
egory from a Google image search did not make sense
and, in any case, would have the made the problem
much harder. The VPC results are only on these five
categories as is the average accuracy. Even for these
categories the accuracy is severely reduced.

9 Discussion

We have presented PLISS, a system for place recogni-
tion and labeling based on changepoint detection. PLISS
scales well with increasing numbers of place labels, has
the significant advantage of being able to detect un-
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known place categories, is computationally efficient, and
has classification accuracy better than state of the art
systems. PLISS gets it’s robustness from labeling not
individual frames, but segments of image sequences,
which in turn are obtained probabilistically using change-
point detection. We use the Multivariate Polya model
for changepoint detection and have demonstrated that
this works effectively on a wide range of image sequences.
Our method also encompasses a novel method for de-
tecting the case where the place category of an image
or a segment from a video is unknown. This is based
on the uncertainty estimate obtained from the Gaus-
sian Process classifier which we use for modeling place
categories in a supervised setting.

We have presented extensive experiments on the
VPC dataset that yield the following conclusions -

— Changepoint detection using the Multivariate Polya
model and the projected multivariate Gaussian model
are a suitable means to segment the video sequences
into pieces that correspond to specific place cate-
gories

— Use of changepoint detection improves the place clas-

sification accuracy over frame-wise classification meth-

ods that use Bayesian filtering

— Detecting unknown place categories improves the
classification accuracy overall, apart from the fact
that it is useful, if not essential, in itself.

— PLISS performs better than state of the art place
categorization systems in most cases

— Our perplexity measure and the perplexity thresh-
old for detecting unknown place categories, given by
(22), perform well in our experiments

— Gaussian Process classifier (GPC) for place mod-
eling, along with our perplexity measure for deter-
mining images belonging to unknown categories, is
powerful enough to provide reasonable results even
on training data that is very disparate from the test
data, as shown by our Google image dataset exper-
iment

The basic assumption underlying PLISS is that places
are sufficiently distinct to be identified visually. If this
is not the case, i.e. the environment is severely percep-
tually aliased, performance will degrade as with any
vision-based system. However, PLISS can be extended
to incorporate multiple sensors to overcome such sce-
narios. We envision significant performance improve-
ments with more sophisticated place models. Such mod-
els may even incorporate object and context informa-
tion from places, which Gaussian Process classifiers can-
not do easily.

Using changepoint detection in PLISS, we label large
segments that have been identified to be visually ho-
mogeneous. In contrast, filtering only takes into ac-

count the previous frame’s label and so provides an ex-
tremely local constraint. In principle, we could extend
the Bayesian filtering to take into account the previ-
ous n frame labels rather than just one in the following
manner

p(xt—n+1:t|h1:t) X P(ht—n+1:t|$t—n+1:t)
Zp(xt‘xt’:tfﬁp(xt’:tfl|h1:t71) (23)

Tys

where ¢ =t — n and h; is the measurement at time ¢.
This is also a recursive formulation, known as fixed-lag
smoothing [34], and is significantly more complicated to
implement. Our use of changepoint detection can also
be viewed as an adaptive fixed-lag smoothing algorithm
wherein n changes with each step. This is clear through
a comparison of (23) with equations (2) and (3).

PLISS can learn and update place models online if
an online version of the GPC is used [52], a scenario
which we have not discussed here. This is helpful in
cases where measurements from the same category show
variation (albeit only if the variation is gradual). Poten-
tially, PLISS could also learn new categories online if an
oracle were available for the first few times that these
labels appear. Investigating the online usage of PLISS
is future work.

Our future work includes the use of the histogram
intersection kernel [17] inside the GPC. Since this kernel
forms the natural metric space between spatial pyramid
histograms, better results can be expected. However, a
problem that needs to be overcome is the high dimen-
sionality of the histograms and the resulting inefficiency
of the system. Another area for future work is to incor-
porate information from multiple sensors, such as depth
and range sensors, in addition to images. Use of 3D
geometric information and other image features such
as edges is also future work. Finally, we would like to
evaluate the online learning aspect of PLISS more and
improve upon it to produce a system with increased
practical use.
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