
Keyframe-Guided Automatic Non-linear Video Editing

Vaishnavi Rajgopalan
Concordia University, Montreal

vaishnavi.rajgopalan@gmail.com

Ananth Ranganathan
Honda Research Institute USA
aranganathan@honda-ri.com

Ramgopal Rajagopalan
Research in Motion, Canada

rrajagopalan@rim.com

Sudhir P. Mudur
Concordia University, Montreal

mudur@cs.concordia.ca

Abstract

We describe a system for generating coherent movies
from a collection of unedited videos. The generation
process is guided by one or more input keyframes, which
determine the content of the generated video. The basic
mechanism involves similarity analysis using the his-
togram intersection function. The function is applied
to spatial pyramid histograms computed on the video
frames in the collection using Dense SIFT features. A
two-directional greedy path finding algorithm is used
to select and arrange frames from the collection while
maintaining visual similarity, coherence, and continu-
ity. Our system demonstrates promising results on large
video collections and is a first step towards increased
automation in non-linear video editing.

1. Introduction

Following the ease of recording and sharing digi-
tal videos, a growing need for applications to organize
and present users’ video collections has emerged. Per-
sonal video collections generally contain video clips
of varying lengths and subjects. Each video clip also
frequently contains unusable portions due to improper
lighting, blur, occlusions, and other technical shortcom-
ings. A system that edits a video collection to create co-
herent movies with specified content while omitting the
unusable portions, would go a long way towards satis-
fying this need.

In this paper, we present a system that automatically
generates visually coherent videos from a video collec-
tion. The input to our system consists of one or more
keyframes that determine the content of the generated
video. For instance, keyframes depicting a birthday
party, a beach trip, and a class lecture would generate a

video containing these three scenarios with appropriate
transition sequences, if available. Importantly, annota-
tion of video clips is not required.

To start with, we compute visual similarity across the
frames in the collection. Similarity is measured using
the spatial pyramid kernel[1], which computes a dis-
tance between histograms of SIFT features[2]. Based
on this distance, the output video is produced by com-
puting a greedy shortest ”path” through the frames of
the video collection where the path is constrained to
pass through the keyframes.

We demonstrate that our approach scales to large
video collections and can generate videos in a mat-
ter of minutes once the video collection has been pre-
processed. With minimal changes, it can be made to
generate an infinite ”screen-saver” video or a video col-
lage containing segments corresponding to each of the
keyframes. These options make it a versatile tool for
presenting large video collections in an intuitive man-
ner. In the following sections, we first describe the
pre-processing step wherein features for the frames in
the video collection are computed. Subsequently, the
video generation process is discussed, followed by re-
sults from experiments.

2. Pre-processing and Feature Extraction

Pre-processing involves extracting the frames from
the videos in the collection, normalizing them, and
computing features on them. To begin with, the ex-
tracted frames are histogram equalized and converted
to grayscale. Subsequently, SIFT features are computed
for each frame on an equally spaced grid. The grid spac-
ing and the patch size on which the SIFT features[2] are
computed are tunable parameters.

As mentioned above, we use the spatial pyramid ker-
nel (SPK) [1] for computing similarity between frames.



The SPK works by computing histograms of clustered
SIFT features at various spatial scales across the video
frame. These histograms are appropriately normalized
and then concatenated to yield the final representation
of the frame. The SPK has a number of advantages over
more commonly used features such as color histograms
and texture[5]. First, SIFT itself is invariant to rotation,
color variations, and some viewpoint variation. Second,
by combining histograms from various scales, the SPK
can effectively encode both global and local character-
istics of the image. Finally, when compared to other
features, the SPK is not very expensive to compute.

The SIFT features computed on the frames are clus-
tered using K-means, with the number of clusters K
usually set in the range of 200-400. For increased ef-
ficiency, only a small subset of features are used during
the clustering, and the cluster centers, also called the
dictionary, are stored. SIFT features from each frame
are mapped to their corresponding clusters.

The SPK divides a frame into regions over multiple
spatial scales. The number of spatial levels is denoted
by L, and the frame is divided into equal sized regions
such that each successive level has four times the num-
ber of regions as the previous level. A histogram of
the number of features in each feature cluster is com-
puted for each region. An illustration of this process is
given in Figure 1. This can be done efficiently by noting
that the histogram of a region at a higher spatial level is
simply the sum of four histograms from the lower level.
Hence, we only compute histograms at the finest spatial
resolution and simply sum them up to obtain the his-
tograms at coarser resolutions.

The final SPK histogram H , which is the feature
used by our system to compute image similarity, is sim-
ply a weighted concatenation of all the histograms from
regions at different resolutions.

H =
1
2L

h0 +
L∑

l=1

1
2L−l+1

hl (1)

where hl is obtained by concatenating all the region his-
tograms at level l, and h0 is the histogram of the whole
image. The SPK histogram given by (1) is computed
and stored for each frame in the video collection.

For large video collections, we also compute repre-
sentative frames, denoted henceforth as repframes, Fv

for each of the videos v through hierarchical clustering
of the SPK histograms. The clustering is performed us-
ing kernel k-means [4] using the histogram intersection
function as the metric. More details about the clustering
procedure can be found in [8]. Upto five repframes are
extracted per video, although usually one suffices for
small video clips. The repframe is taken to be the frame
closest to a cluster center.

Figure 1. The Spatial Pyramid Kernel
(SPK) representation: Histograms of clustered
SIFT features computed on image regions at different
spatial resolutions are concatenated to yield the SPK
representation of the image. The image regions are ob-
tained by dividing it into successively finer grids.

3. Video Generation

The input to the system for generating a video is a
set of keyframes that determine the video content. Fea-
tures are extracted from the keyframes in exactly the
same manner as described in Section 2 above. Once the
SPK histograms for the keyframes have been obtained,
video generation proceeds by successively picking vi-
sually similar frames.

The histogram intersection function, used for com-
puting visual similarity, is defined as

I(x, y) =
∑

i

min (Hx(i),Hy(i)) (2)

where x, y are images, Hx,Hy are their SPK his-
tograms, and the sum is over the bins of the histograms.
It can be shown that (2) is a proper distance function.

The input keyframes are assumed to be arranged se-
quentially and the first and last keyframes are taken
to be the start and end frames of the output video.
Assuming N keyframes and representing these by
{K1,K2, . . . ,KN}, we will now present the algo-
rithm for generating the output video segment between
keyframes Ki and Ki+1.

The next frame in the video is obtained by comput-
ing the distance from the current frame to all the other
frames, and selecting the one which is closest. How-
ever, for efficiency reasons, this step is implemented
by first selecting the closest repframe Fc, and subse-
quently, by selecting the closest frame in the corre-
sponding video c as shown in Figure 2. This frame
selection procedure is carried out from both keyframes
Ki and Ki+1 until the ”paths” meet up. This yields us
the output video segment between these two keyframes.
This procedure is repeated for each pair of keyframes
from K1 to KN to yield the output video. The two-
directional greedy path-finding algorithm provides an



Figure 2. Selection of next frame of output
video. (left) The current frame is matched with all
repframes to select the closest video (shaded). (right)
All the frames in the selected video are again matched
with the current frame to obtain the best one (shaded).

effective and efficient solution since optimal algorithm
such as Dijkstra’s algorithm cannot be used in this case.
Note that the runtime of the frame selection algorithm is
O(NfV ) where Nf is the number of frames per video
and V is the number of videos in the collection.

Smoothing Factor: The above algorithm while pro-
ducing visually similar frames in sequence, does not
maintain dynamics nor does it prevent short loops
which make the output video jerky. To maintain video
dynamics, we modify the distance function to take into
account the distance between future frames, i.e. the
distance between the ith frame of video v, and the jth
frame of video w is

D(vi, wj) =
K∑

k=0

ckI (vi+k, wj+k) (3)

where ck are manually-defined weights and the number
of frames K to sum over is a parameter. A higher K
leads to the output video following the videos in the col-
lection more closely. The weighted distance (3) is the
same as the one used in [3]. In our implementation of
the weighted distance, we compute the two most similar
video repframes to the current frame. Successor frames
to wj are assumed to come from the second-most simi-
lar video if wj is at the end of video w.

Time-Weighted Distance Factor: The algorithm
may get trapped into producing short, repetitive loops
despite the weighted distance function if a small set
of frames or a particular video is sufficiently dissim-
ilar from all others in the video collection. This is
avoided in our system through the introduction of a
time-weighting factor into the distance function. A
counter is maintained for each frame which is set to
a constant Tmax if the frame is selected. At each
time-step, all non-zero counters are decremented by
one. The distance function is modified to reflect the

counter as D′(vi, wj) = twj

∏
D′(vi, wj) where twj is

the counter corresponding to frame wj . A large Tmax

makes the algorithm return to a particular frame after
a longer time. The counters are maintained as a sparse
vector since most of the values at any given time are
zero (Tmax � number of frames in the collection),
and hence this modification is efficient both in terms
of memory and runtime.

Generation of Video Textures

Our system can also generate video textures [3],
which are essentially videos of infinite length. This
is done by converting the distance function D′ into
a probability distribution on the selection of the next
frame p(f) ∝ exp (−D′(fc, f)), where fc is the cur-
rent frame. The next frame is sampled from its prob-
ability distribution but in a hierarchical manner, where
first the video is selected by sampling from the distribu-
tion over repframes and a frame from the video is sam-
pled subsequently. Since the distance function already
incorporates dynamics and avoids loops, the generated
video is relatively smooth. However, occasional unre-
lated jumps happen due to sampling effects.

4. Results

Our system was implemented in Matlab and we per-
formed experiments using a collection of 45 videos
ranging from 1 minute to 5 minutes in length. The
videos contain diverse material such as lectures, danc-
ing, skiing, wildlife, and parties. All videos were re-
duced to 320x240 pixels in size. SIFT features were
detected on 16x16 image patches over a grid with spac-
ing of 8 pixels. We computed 200 SIFT clusters during
the SPK computation with a pyramid level of 3. The
number of smoothing frames K in (3) was also set to 3
while the maximum time weight Tmax was 100. One
repframe was computed per video. Preprocessing the
video collection took about 70 minutes. Output video
generation occurs at 2-3 frames/sec.

The use of other features, in place of dense SIFT, was
explored. We implemented our system with the Census
Transform [9] and color histograms respectively. The
Census Transform is a local feature that encodes the
value of a pixel’s intensity relative to that of its neigh-
bors and was originally introduced for identifying cor-
respondence between local patches. It can be computed
extremely fast and also does not require the use of k-
means for creating clusters since the number of possible
transform values is finite and small. We used the Census
transform with window size 3 yielding a histogram with
256 bins, more details of which can be obtained from



Figure 3. Output video smoothness (as
normed frame difference between successive frames)
for three types of basic features. Dense SIFT performs
best.

[7]. These features are quantitatively compared in the
context of our system using the pixel-wise Euclidean
distance between successive frames of the output video
generated when using each of the features. This is given
in Figure 3 for an output video of length 500 frames. A
sudden jump in the graph indicates an abrupt transition
in the output, and the ideal graph would be steady and
have low values. As can be seen, the Census transform,
and especially the color histogram, produce output with
many more abrupt transitions than Dense SIFT.

The progression of an output video sequence is
shown in Figure 4. Note that even though the first input
keyframe does not appear in the video collection, video
frames containing a Dalmatian are chosen correctly as
the subject of the output. In this case, the output tran-
sitions smoothly between four Dalmatian videos in the
collection. Our system produces coherent videos and
is able to select frames resulting in smooth transitions
except when such connective frames are not available.
It is hoped that larger video collections will give rise to
more coherent output videos.

5. Discussion

We have presented a system for generating coherent
videos out of unedited video collections. The content
of the output videos is guided by a few input keyframes
from the user. Dense SIFT features are used as the ba-
sis for computing similarity between frames, and this
choice of feature is borne out by experimental results.

Our system is a first step towards providing increased
automation support in non-linear video editing. In fu-
ture work, other associated information, say, video or

Figure 4. Output video progression for an
input of two keyframes (top row)

frames annotated with category labels could be used to
enhance the video generation process. In particular, cat-
egory labels have been shown to be amenable to spatial
pyramid kernels [1]. However, visual similarity would
still be required to produce a smooth video since intra-
class appearance variation within category labels is very
high. Video generation based on objects present in the
frame [6] is also future work.

References

[1] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: spatial pyramid matching for recognizing natu-
ral scene categories. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2006.

[2] D. Lowe. Distinctive image features from scale-invariant
keypoints. Intl. J. of Computer Vision, 60(2):91–110,
2004.

[3] A. Schödl, R. Szeliski, D. Salesin, and I. Essa. Video
textures. In SIGGRAPH, 2000.

[4] B. Scholkopf, A. Smola, and K. Muller. Nonlinear com-
ponent analysis as a kernel eigenvalue problem. Neural
computation, 10(5):1299–1319, 1998.

[5] F. Schroff, C. L. Zitnick, and S. Baker. Clustering videos
by location. In British Machine Vision Conf. (BMVC),
2009.

[6] J. Sivic and A. Zisserman. Video google: A text retrieval
approach to object matching in videos. In Intl. Conf. on
Computer Vision (ICCV), pages 1470–1477, 2003.

[7] J. Wu and J. M. Rehg. Where am i: Place instance and
category recognition using spatial pact. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2008.

[8] J. Wu and J. M. Rehg. Beyond the euclidean distance:
Creating effective visual codebooks using the histogram
intersection kernel. In Intl. Conf. on Computer Vision
(ICCV), 2009.

[9] R. Zabih and J. Woodfill. Non-parametric local trans-
forms for computing visual correspondence. In Eur. Conf.
on Computer Vision (ECCV), volume 2, pages 151–158,
1994.


