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Abstract
We introduce Random Multinomial Logit (RML), a general multi-class classifier

based on an ensemble of multinomial logistic regression models, and apply it to the task
of semantic image segmentation. The algorithm is simple, can be trained efficiently, and
has near realtime runtime performance. RML combines the desirable properties of multi-
nomial logistic regression, being stable and theoretically sound, with those of bagging,
which is noise-resistant and applicable to large feature spaces. As a second major contri-
bution, we describe a feature selection algorithm for RML based on statistical properties
of logistic regression that ensures that computation is not wasted on statistically insignif-
icant features.

We evaluate RML on an extremely challenging real-world video dataset of traffic
scenes with large illumination, perspective, and intra-class variation, as well as on the
20-class VOC 2008 dataset. Comparisons with recent techniques on the latter dataset
demonstrate RML as being state of the art, and advancing it in many cases.

1 Introduction
We are interested in the task of classifying street scenes for use in intelligent transportation
systems. This involves detecting the road, other vehicles, and pedestrians to alert the user in
potentially dangerous situations. For instance, the detection of fast moving vehicles, such as
motorbikes, would help decrease the number of accidents significantly.

The challenge in this application, in addition to the inherent difficulty of generic street
scene recognition, is the need to detect and localize even tiny objects in the image. Hence,
image-level features and statistics are insufficient. At the same time, real-time processing is
also of crucial importance.

In this paper, we address these challenges by introducing Random Multinomial Logit
(RML), a general purpose classifier, and applying it to the task of texture-based scene seg-
mentation. RML consists of an ensemble of multinomial logistic regression models, each of
which operates on a randomly selected subset of features and outputs a probability distribu-
tion on the label of the pixel corresponding to the features. The use of a bagging framework
overcomes the inability of multinomial logistic regression to operate in large feature spaces.

RML exhibits exceedingly good scaling properties with respect to amount of training
data and has near-realtime runtime performance. It is also tolerant to significant levels of
label noise and is resistant to over-fitting due to the use of a bagging framework [3].

We describe the use of goodness-of-fit statistics for feature selection during the learn-
ing phase. Feature selection is performed to improve the quality of each regression model
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Figure 1: An overview of our scene segmentation system using RML: training images are convolved
with a filter bank and clustered to yield texton images, on which texture-layout features operate. Five
texture-layout features are shown in the second box from the left. Subsets of such features are randomly
selected and passed into an ensemble of multinomial logistic regression models (here having three
features each), the outputs from which are averaged to yield the final semantic segmentation.

and reduce the total number of models required. We use texture-layout features [23] in con-
junction with RML to perform scene segmentation in this paper. Our motivation for using
these features is that they are simple, fast to compute, and capture local context of the im-
age. However, in general, any texture-based feature can be used. An overview of our scene
segmentation system is shown in Figure 1.

Random forests [3, 10] have recently attracted attention by demonstrating good results
on the tasks of scene segmentation and image categorization. RML and Random forests are
similar in the manner in which the individual models, multinomial logit and decision trees
respectively, are put together in an ensemble. Thus, while both RML and Random forests
share the advantages of being ensemble methods, RML has many exclusive properties arising
from its use of multinomial logistic regression -

• RML learns specific regression functions for classification while Random forests find
rectangular classification "regions" in input space [3]

• The number of feature computations is constant and can be pre-computed, as opposed
to Random forests, where the number of features required depends on the depth of the
tree and path taken through the tree.

• Feature selection in Random forests is usually done using data-agnostic methods such
as information gain, whereas RML uses goodness-of-fit tests on the data.

2 Related Work
Scene segmentation [1, 25] has been an active area of research, and methods based on dis-
cretized representations such as codebooks of features [24] or textons [12, 16, 26] have
proven quite powerful. These methods employ "bag of words" models [6, 29], which model
the whole image or specific regions using histograms of visual words [4], with or without
spatial context [15]. RML is different from these methods in that it uses a logistic regression
model over local feature responses rather than a "bag of words" model. Hence, spatial con-
text is not built into the representation but is modularized in the features used. We now focus
on research using texture-based classifiers and randomized methods.



RANGANATHAN: RANDOM MULTINOMIAL LOGIT 3

Textonboost [23], which also uses texture-layout features, introduced the use of boosting
for selecting features that act on textons. Since the number of such features is very large,
training is very slow and the number of features required for a constant level of performance
increases rapidly with the size of the dataset and variation in object classes therein. Semantic
texton forests [22] were introduced to avoid the problems of boosting through the use of
Random forests, both for the creation of the texton codebook and for classification. However,
in this and other works using Random forest classifiers [2, 9], the decision trees are only
grown upto a pre-determined depth, say d, which is in direct violation of the extremely
randomized forests algorithm [10] on which these methods are based. While a fixed depth
random forest works well for most cases, its performance deteriorates with increasing intra-
class variation and label bias in training data (Cf. Section 5.2). Good labeling performance
is only achieved when the random forest is grown without pruning. However, this makes the
runtime performance slow, since the depth of the tree increases with the amount of training
data. In contrast, a Random Multinomial Logit (RML) classifier always has O(1) runtime
performance.

Csurka and Perronnin [5] give a novel method based on a Fisher vector representation of
patches that is simple but requires one classifier per object category. He et al. [11] introduced
multiscale conditional random fields (CRFs) for per-pixel segmentation while Kohli et al.
[13] explore graph cuts on such random fields in a series of papers which yield accurate
segmentation but are too slow for our purposes. Random Ferns [20] have been used for
semantic segmentation [2] but require the the use of sophisticated discriminative features
with built-in invariances, which unfortunately are slow to compute.

Other related object detection methods can only deal with a few labels [1, 27], or confine
themselves to a single object category [9]. Moosmann and Triggs [17] use Random forests
for clustering to create the "bag of words" model but only address image classification, and
not pixel-level segmentation.

Random forests of multinomial logistic regressors were first introduced in [21] but did
not include feature selection. Our extensions to the original algorithm and its use in computer
vision are novel contributions.

3 Random Multinomial Logit
An RML classifier consists of N multinomial logistic regression models, each of which mod-
els the probability distribution of the label y given the input vector x as

πil = pi(y = l|x,βi) =

exp

(
βil0 + ∑

f =1:M
βil f φ f (x)

)
/Z, l = 1 : L−1

1/Z, l = L

(1)

where i and l are indices into the model and label set respectively, and Z is the normalizing
constant that makes the distribution sum to unity. The φ(.) are feature functions computed
on the input vector x, and βil is the vector of coefficients of length (L− 1) that define the
detection function for object category l. Stacking each of these vectors, we obtain the (L−
1)× (M +1) matrix βi of all the coefficients for the multinomial regression model.

Training for the RML classifier, which involves learning the β coefficients from data,
proceeds in a manner similar to Random forests. The training set is sampled with replace-
ment to get N smaller sets using which the individual regression models are learned. The
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features for the individual models are also selected randomly, with M features per model.
The final output label distribution of the RML is computed by averaging over the output of
the individual models

π̂l = ∑
i=1:N

πil (2)

An illustration of the training process is given in Figure 1.
The coefficients β for the individual regression models are learned in a maximum a

posteriori (MAP) framework with a L2 regularizing prior on the model parameters β . The
function to be maximized is thus (dropping the index for the model number) -

L(β |{x,y}) = ∑
{x,y}

logπy−αβ
2 (3)

where {x,y} is the training data, α is the regularization strength, and πy is as in (1).
Optimization of (3) is done using standard algorithms such as gradient descent or second

order methods. The gradient of (3) for a specific coefficient is given as

∂L
∂βl f

= ∑
{x,y}

φ f (x)(I(l = y)−πil)−2αβl f (4)

where I(.) is the indicator function which yields unity if its argument is true. We compared
stochastic gradient descent, Newton’s method, and L-BFGS for this purpose and found L-
BFGS to give the best trade-off between training time and performance. Stochastic gradient
descent is slower to converge for large training sets but can be considered for online applica-
tions where updates for β based on individual training points is necessary.

3.1 RML for Scene Analysis
Our algorithm for scene analysis is based on textons [16]. Textons are discretized texture
words, which are learnt by clustering the output of a filter bank applied to the training set.
Clustering is performed using hierarchical K-means clustering. We considered supervised
clustering using Random forests [17] but this produces large codebooks and the exact number
of clusters cannot be controlled.

Texture-layout features [23], which we use in this paper, consist of a rectangle r and a
texton word t. For every pixel p, the feature computes the proportion of the texton word t
inside the rectangle r, where r has been translated to be in the coordinate system with p as the
origin. It can be seen that texture-layout features capture local textural context in the image,
for instance the relationship that a boat is usually surrounded by water. In addition, this
contextual relationship, expressed as a linear combination of multiple texture-layout feature
values, is sufficient to do pixel-wise scene labeling. TextonBoost [23] does exactly this but
does not scale well with the size of the training set and number of labels since the total pool
of features from which the selection has to be made also increases correspondingly.

To learn the RML based on texture-layout features, we first pre-select Nr rectangular
regions randomly, so that the total number of possible features is Nr ×Nt , where Nt is the
number of texton words in the codebook. Subsequently, for each multinomial regression
model in the RML, a set of M � Nr ×Nt features are selected randomly to create the dis-
tributions given in (1). We limit the number of features M to be small, typically 10-20,
so reasons of computational efficiency. In practice, this number suffices to produce good
results.
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Figure 2: Feature selection: Texture-layout features consist of a rectangular shape and a texton word
(denoted here by color). Features are statistically insignificant for labeling when their values are not
indicative of the pixel label. This may be because the shape of texture-layout feature is too large or too
small. Here, for instance, the 4th feature in the multinomial regression model is statistcally insignificant
and should be discarded through feature selection.

The RML is learned in a supervised manner using pixel-wise labeled data. The feature
values evaluated at a pixel along with its label constitute a training instance. Randomly se-
lected subsets of this training data are used to learn the individual regression models. During
runtime, the features in the regression models are evaluated on the test image and passed
through the regression models to get the output labeling as in (2).

4 Feature Selection
The vanilla RML algorithm described above can be improved upon through feature selection.
An impetus for doing this is provided by the fact that many of the features picked randomly
will not have a bearing on the labeling decision. For example, the shape of a texture-layout
filter may be too big or too small to provide any useful information as shown in Figure 2.
Hence, evaluating the feature response in these cases will merely result in wasted computa-
tion.

Feature selection is performed by swapping a feature in the model with a randomly se-
lected new feature. If statistically insignificant features exist in the current model, these are
preferentially swapped out, otherwise the selection is made randomly and the better feature,
as pointed out by the likelihood ratio test, is retained. Statistical significance of coefficients
and selection using the likelihood ratio test are explained below.

Statistical Significance A feature does not contribute in model (1) if the column of
coefficients corresponding to it are all extremely small. A simple, scale-independent test for
determining this is to ascertain the statistical significance of the β values by comparing
them with their standard deviation. If

∣∣βl f
∣∣ ≤ 2σl f , ∀l ∈ [1 : L− 1], where σl f are the

corresponding standard deviations, the feature φ f is dropped from the model and another
feature is randomly selected in its place. The regression model is then re-learnt with the
current coefficients being used as initial values for the optimization. Since the discarded
feature was not statistically significant, the coefficient values for the other features generally
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Algorithm 1 RML Feature Selection
Input: Current multinomial logistic regression model ML = {φ1:M ,β}, coefficient standard deviations

σ , rounds of feature selection S
LL ⇐ log-likelihood of ML
for i = 1 to S do

B ⇐ set of features φ{ f} s.t.
∣∣βl f

∣∣≤ 2σl f ∀l ∈ 1 : L−1
if B is empty then

Swap a randomly selected feature from current model for a randomly selected new feature φ ′

else
Swap a randomly selected feature from B for a randomly selected new feature φ ′

end if
ML′⇐ new model learnt using maximum likelihood
LL′⇐ log-likelihood of ML′

if LL′ > LL then
ML ⇐ ML′, LL ⇐ LL′

end if
end for
return ML

do not change much 1 ,and the re-learning proceeds efficiently.
The standard deviation of the coefficient estimates can be computed from the Hessian of

the log-posterior function (3)

∂ 2L
∂β 2

chl f
= ∑

{x,y}
−φh(x)φ f (x)πc (I(c = l)−πl)−2α (5)

where c, l and h, f are indices into the label and feature sets respectively. The inverse of the
Hessian is the covariance matrix of β , from which the standard deviations can be obtained.

Randomized Feature Selection When all the features in a multinomial logistic regres-
sion model are statistically significant, the model is improved by randomized feature selec-
tion based on the likelihood ratio test. The quantity−2logL, where L is the log-likelihood of
the model, follows a chi-squared statistic and is smallest for the best-fitting model. Hence,
for two models differing by a single feature, the model with the lower statistic is retained.
The feature selection algorithm is summarized in Algorithm 1.

5 Evaluation
The RML was implemented in Matlab and all our experiments were run on a modern, quad-
core linux machine.

5.1 Implementation
Textonization We first pre-process all the images so that they are histogram equalized and
have zero mean, unit standard deviation. Subsequently, the training set is convolved with a 17
dimensional filter bank, consisting of Gaussians at scales k, 2k, 4k, derivatives of Gaussians
along the x and y axes at scales 2k, 4k, and Laplacians of Gaussians at scales k, 2k, 4k, 8k,

1though correlation effects can cause large changes, albeit rarely
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where k is a parameter. The Gaussians are computed on all three channels of the CIELab
color space while the rest of the filters are only applied to the luminance channel. This filter
bank is the same as the one used in [28]. The 17-D vectors corresponding to the pixels are
clustered using hierarchical k-means clustering with Elkan’s method [7] to speed it up.

Texture-layout features are computed efficiently using integral images [23]. Moreover,
since the features to be computed are known before-hand, they need to be computed just
once, as opposed to Random forests.

Learning the multinomial logit models We learn the multinomial logistic regression
models by maximizing (3) using Nocedal’s L-BFGS [18], which is a low memory, quasi-
Newton optimization algorithm. The regression models in RML are learnt using a boost-
strapping approach in the sense that the training data for successive models are biased to-
wards instances that the existing models have trouble classifying correctly. We also found
that this reduces overlap between the training data subsets used, and hence, the correlation
between the regression models. The regularization parameter α is set manually to get opti-
mal performance on the training set.

Implementations for comparison We implemented Textonboost and Random forests
for comparison purposes. Both algorithms learn texture models and perform texture-based
pixel-wise classification.

Textonboost was implemented as described in [23] with standard texture-layout features
and random feature selection. We implemented a Random forest classifier based on texture-
layout features for comparison purposes. Learning proceeds by taking all the pixels as train-
ing points and splitting this set at each node of the decision tree according to the function
v[r,t](p) > θ , where v[r,t](.) is a randomly chosen texture-layout feature with shape r acting
on texton t, and θ is a threshold that maximizes the information gain of the split out of a set
of randomly sampled alternatives.

Finally, we implemented the Conditional Random Field (CRF) algorithm described in
[23] to take the outputs of RML, Textonboost, and random forests respectively as texture
potentials, and provide a smooth segmentation respecting edge boundaries. The color and
edge models were the same as in [23] but CRF learning was done using L-BFGS instead of
the piece-wise learning used therein.

5.2 Motorbike video dataset
We have gathered a challenging dataset of motorbikes on streets for validating and compar-
ing algorithms in a realistic scenario. The dataset consists of video sequences obtained by
mounting a camera pointed backwards from the window of a moving vehicle. The videos
are similar to what a driver would see in a side rearview mirror. The videos differ in the
types of bikes they contain, viewing perspective, the amount of clutter and lighting quality.
Since perspective varies widely - the bikes in this dataset are mostly viewed head-on in a
street setting - existing datasets that only contain side views of parked bikes cannot be used
for training.

We manually labeled 63 frames from 6 video sequences containing three very different
looking bikes and approximately 5800 frames in total. The labeling only contains 4 classes
- bike, road, sky, and other, and hence, the scene segmentation task in this case is to segment
these classes precisely. 43 of the labeled frames were used for training while the rest were
used as test data for calculating error.

The 1024x768 training images were subsampled so that only every 4th pixel was used for
training. The number of textons used was Nt = 100, and the number of rectangular shapes



8 RANGANATHAN: RANDOM MULTINOMIAL LOGIT

Figure 3: Results on the motorbike dataset. Top: Representative results on a few frames of video with
sky labeled in light blue, road in red, bike in yellow, and background in dark blue. Note the difficulty
due to illumination, shadows, occlusions, and small size of the bikes. Bottom: Overall pixel-wise
classification and Bike-only pixel-wise classification results for various algorithms.

used to create texture-layout features was Nr = 100. RML was trained with N = 15 and
M = 15, 25 decision trees were used in the random forest, and Textonboost was trained for
500 rounds of boosting (and had achieved zero training error by then).

The resulting pixel-wise accuracies of the various algorithms are given in Figure 3. Also
shown are representative images of results from RML. A video of these results has also
been submitted as supplementary material. Since the motorbike label is frequently only a
very small portion of the image, the pixel-wise accuracy for bikes is more revealing and is
given separately. Textonboost and RML show very similar results but RML is much faster,
especially during runtime (0.12 secs/frame compared to 6.03 sec/frame for TextonBoost),
because it evaluates fewer features. However, this results in slightly noisier segmentations
so that the improvement in RML through the use of the CRF is much greater than that in the
other algorithms. Figure 3 also shows that the use of our feature selection algorithm results
in an increase in performance as expected.

Results for two versions of the random forest algorithm are given - one in which the trees
are only learned upto a maximum depth d = 15 and the second in which they are grown to
full depth until the leaves only contain pixels from a single label. The depth limited version
performs worse (figure 3) in labeling bikes. However, we found that this gap in performance
was largely due to extreme label bias in the training set combined with large viewpoint
variations. When the training data was resampled to reduce label bias and images differing
most widely in viewpoint were discarded, the performance of the two versions of random
forests became similar. This indicates that not limiting the tree depth results in a more
powerful random forest classifier capable of coping with greater variation in the training
data without the need for adding randomly transformed copies of the training images [22].

5.3 VOC 2008
The VOC dataset [8] contains 20 object classes and is considered extremely challenging.
Parameters for RML were N = 25 and M = 20. We used the ’trainval’ split in the dataset for
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Figure 4: Top: Representative results from the VOC dataset giving a visual comparison of RML
output and groundtruth. Bottom: Results on the VOC 2008 dataset given as pixel-wise percentage
accuracy. XRCE_Seg is the method from [5] which performed best on this dataset at the PASCAL
challenge [8]. RML improves on these results in most cases. Mean accuracy for the two methods are
25.8% for XRCE_Seg and 28.7% for RML+CRF.

training and testing. We compare against [5], which was the best method in the PASCAL
challenge 2008. It can be seen from the results in Figure 4 that RML improves over [5]
almost across the board and is almost as good when it does not. Exceptions are the chair and
table classes, which are extremely hard, and get confused with other classes and background.

We also tested the effect of the number of models N, and the number of features M on this
dataset. Figure 5 verifies that performance increases with N initially but then plateaus off as
expected. It also demonstrates the need for regularization in multinomial regression models
with large number of features, as without regularization performance initially increases with
M but then starts decreasing beyond a particular value.

6 Discussion
We described a new multi-way classification algorithm based on multinomial logistic re-
gression and demonstrated its usefulness for scene analysis through state of the art results
on challenging datasets. Random Multinomial Logit (RML) combines small groups of ran-
domly selected features in a theoretically sound and well-proven statistical framework. It is
easy to implement and very computationally efficient.

A limitation of RML is that a large label bias in data is hard to overcome when learn-
ing the regression models except through bootstrapping or biased sampling of the training
data. RML is also noisier when used as a stand-alone classifier on difficult datasets, thus
necessitating some form of smoothing of the output.

It is future work to explore the use of sparse multinomial regression methods [14] for
speeding up RML since sparsification can be employed instead of feature selection. RML
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Figure 5: Effect of RML parameters on labeling accuracy: the black (dark) curve shows the effect
of increasing the number of features M in a RML without regularization. The red (dashed) curve
shows the same effect but with an L2-regularized RML while the green (light) curve demonstrates that
performance levels off as the number of models N in the RML is increased beyond a certain limit.

can also quantify its confidence on its output labeling, based on confidence intervals from
multinomial logistic regression. Use of this information can improve performance. Finally,
it may be possible to fuse other cues based on similar representations, such as shape and
contours [19], into a single RML-based framework for robust classification.

References
[1] S. M. Bileschi. StreetScenes: Towards Scene Understanding in Still Images. PhD

thesis, Massachusetts Institute of Technology, May 2006.

[2] A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and
ferns. In Intl. Conf. on Computer Vision (ICCV), pages 1–8, 2007.

[3] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[4] O. Chum and A. Zisserman. An exemplar model for learning object classes. In IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2007.

[5] G. Csurka and F. Perronnin. A simple high performance approach to semantic segmen-
tation. In British Machine Vision Conf. (BMVC), 2008.

[6] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization
with bags of keypoints. In ECCV International Workshop on Statistical Learning in
Computer Vision, 2004.

[7] C. Elkan. Using the triangle inequality to accelerate k-means. In Intl. Conf. on Machine
Learning (ICML), pages 147–153, 2003.

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes Challenge 2008 (VOC2008) Results. http://www.pascal-
network.org/challenges/VOC/voc2008/workshop/index.html, 2008.



RANGANATHAN: RANDOM MULTINOMIAL LOGIT 11

[9] J. Gall and V. Lempitsky. Class-specific hough forests for object detection. In IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2009.

[10] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning,
36(1):3–42, 2006. URL http://www.montefiore.ulg.ac.be/services/
stochastic/pubs/2006/GEW06a.

[11] X. He, R. Zemel, and M. Carreira-Perpinan. Multiscale conditional random fields for
image labelling. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2004.

[12] B. Julesz. Textons, the elements of texture perception, and their interactions. Nature,
290:91–97, March 1981.

[13] P. Kohli, L. Ladicky, and P. Torr. Robust higher order potentials for enforcing label
consistency. Intl. J. of Computer Vision, 2009.

[14] B. Krishnapuram, M. Figueiredo, L. Carin, and A. Hartemink. Sparse multinomial
logistic regression: Fast algorithms and generalization bounds. IEEE Trans. Pattern
Anal. Machine Intell., 27:957–968, June 2005.

[15] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: spatial pyramid match-
ing for recognizing natural scene categories. In IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2006.

[16] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image
segmentation. Intl. J. of Computer Vision, 43:7–27, June 2001.

[17] F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks using
randomized clustering forests. In Advances in Neural Information Processing Systems
(NIPS), 2006.

[18] J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of
Computation, 35:773–782, 1980.

[19] A. Opelt, A. Pinz, and A. Zisserman. Fusing shape and appearance information for
object category detection. In British Machine Vision Conf. (BMVC), 2006.

[20] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint recognition using
random ferns. IEEE Trans. Pattern Anal. Machine Intell., 2009.

[21] A. Prinzie and D. Van den Poel. Random forests for multiclass classification: Random
multinomial logit. Expert Systems with Applications, 35(3), 2008.

[22] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categoriza-
tion and segmentation. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2008.

[23] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image understanding:
Multi-class object recognition and segmentation by jointly modeling appearance, shape
and context. Intl. J. of Computer Vision, 81(1):2 –, 2009.

http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2006/GEW06a
http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2006/GEW06a


12 RANGANATHAN: RANDOM MULTINOMIAL LOGIT

[24] Josef Sivic, Bryan Russell, Alexei A. Efros, Andrew Zisserman, and Bill Freeman.
Discovering objects and their location in images. In Intl. Conf. on Computer Vision
(ICCV), 2005.

[25] E. Sudderth, A. Torralba, W. Freeman, and A. S. Willsky. Describing visual scenes
using transformed objects and parts. Intl. J. of Computer Vision, March 2008.

[26] M. Varma and A. Zisserman. A statistical approach to texture classification from single
images. Intl. J. of Computer Vision, 62:61–81, April 2005.

[27] J. Winn and A. Criminisi. Object class recognition at a glance. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2006.

[28] J. Winn, A. Criminisi, and T. Minka. Categorization by learned universal visual dictio-
nary. In Intl. Conf. on Computer Vision (ICCV), volume 2, pages 1800–1807, 2005.

[29] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels for
classification of texture and object categories: A comprehensive study. Intl. J. of Com-
puter Vision, 73:213–238, 2007.


