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Abstract— Reliable lane-level localization is a requirement
for many driver-assistance methods as well as for autonomous
driving. Localization using cameras is desirable due to ubiquity
and cheapness of sensors but is hard to achieve reliably. We
propose a method towards reliable visual localization using
traffic signs painted on the road such as arrows, pedestrian
crossings, and speed limits. These road markings are relatively
easily detected since they are designed to be highly conspicuous.
Our method automatically recognizes road markings and uses
features detected within them to compute the location of the
vehicle. This provides an absolute global localization if the road
markings have been surveyed before hand, and relative position-
ing information otherwise. We demonstrate using experiments
and with groundtruth data that our method provides accurate
lane-level visual localization under various lighting conditions
and using various types of road markings.

I. INTRODUCTION

Reliable vehicle localization has been a topic of interest
to the research community for a while [11]. This is because
vehicle position is essential for autonomous driving, as well
as for applications ranging from providing intuitive turn-by-
turn directions to use of vehicle-to-vehicle communications.
The most common positioning method is to use GPS, which
while providing a number of advantages, has also a few
well-known limitations. The two main limitations are overall
accuracy and inability to function in urban areas and moun-
tainous terrain where a large portion of the sky is blocked
off. Overall accuracy of GPS used in current vehicles is of
the order of 3 to 10 meters under best conditions [21], [25],
which is insufficient for lane-level localization.

We are interested in performing localization using cam-
eras. While the motivating factor is the low cost of the
sensor as compared to others (for instance, lidars [11]), the
corresponding challenges in making a robust system are also
higher. Harsh lighting conditions and featureless environ-
ments such as broad highways pose special difficulties.

In this paper, we propose a novel method for using road
markings painted on the road surface to estimate the precise
location of the vehicle. Road markings are relatively easy to
detect under various lighting conditions as they are designed
to be conspicuous. Hence, use of these markings can be
expected to improve the robustness of a general purpose
vision-based localization system. An example of our system
in action is shown in Figure 1.

We propose the use of a stereo camera pair for this work
and use our road marking detector presented in [24] as the
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Fig. 1. A sequence of images showing pose estimation from a single road
mark that is repeatedly detected as the vehicle drives past it. Each row shows
(from left to right) the input image, the inverse perspective mapped image,
and the vehicle position shown against the surveyed map data. Blue crosses
mark the estimated position and purple crosses show the GPS groundtruth
from the vehicle. Other points are part of the surveyed map data, which
includes the GPS locations of the road markings(in red).

basis of our localization system. The detector uses a feature-
based template approach. Once the road marking has been
detected, we compute corners inside the detected road mark-
ing area and use these corners for estimating the pose of the
vehicle. We present two methods for estimating the vehicle
pose from the detected corners, one using triangulation and
the second using a linear transform on a bird’s eye view
image. These two methods are compared using groundtruth.

Evaluation of our algorithm is performed using a
groundtruth dataset of surveyed road markings which con-
tains GPS coordinates of pre-specified corners within road
markings on certain roads. The results demonstrate the
accuracy and practicality of our approach.

II. RELATED WORK

Vehicle localization has a vast and varied literature based
on the use of GPS devices. A number of methods try to



augment GPS with inertial sensors [4] and map matching
methods [17], [19] to overcome GPS dropouts due to occlu-
sion of satellites. Our interest is in low-cost accurate solution
and hence, we do not focus on differential GPS and other
augmentation services [8].

Apart from GPS, the use of any other sensors for lo-
calization results in drift over time due to accumulation of
errors. In this work, we avoid drift by localizing against road
markings that, when surveyed previously, provide absolute
location. To our knowledge, such an approach has not been
tried before. Our method, while it can be used by itself,
is more suited for use after integration with a general
purpose localization system consisting of visual odometry
and location recognition, such as [12].

The common method for driftless localization in the litera-
ture is the use of a map registered to global coordinates. Such
maps are built using simultaneous localization and mapping
(SLAM) methods [20] using stereo vision [12], monocular
vision [2], and lidars [11].

Road marking detection is a subject that has not been ex-
plored much previously. Veit et al. [23] provide an overview
of existing road marking detection methods. However, they
focus only on detection and not on classification of the road
markings. Vacek et al. [22] use detection of lane markers
to guide road marking detection and thus, cannot function
in the absence of clear lane markings. Noda et al. [16]
compute an eigenspace on a template by perturbing an ideal
template under different illumination, scale, blur, and motion
blur conditions. Classification is performed using eigenspace
analysis. A method based on shape matching [10] is closest
to our system in terms of applicability as it operates in
real-time and can detect and classify a large number of
complex road markings. However, we claim that our system
is much simpler than the one presented therein, which uses
a two-stage neural network classifier for which the number
of hidden nodes and their connectivity has been carefully
chosen by hand for the experiments.

III. ROAD MARKING DETECTION

We begin by providing an overview of our road marking
detector which forms the basis of our pose estimation system.
Our road marking detection system is based on learning
feature-based templates of the markings using training im-
ages. In particular, our choice of features for defining the
templates are FAST corner features [18]. During runtime,
these templates are matched using a two step process of
first selecting promising feature matches and subsequently
performing a structural matching to account for the shape of
the markings.

Templates are learned from training images which contain
groundtruth bounding boxes for the road markings. The
training images are first rectified to compensate for lens
and perspective distortions, the latter in particular being
done with an inverse perspective transform [1]. Subsequently,
FAST corners are detected within the regions of interest,
and the bounding box and the corners along with their HOG
descriptors [3] are stored as the template for that particular

Fig. 2. The flow of our algorithm for road marking detection (clockwise
from top left) the original image, rectified inverse perspective map image
(birds-eye view), detected regions of interest (MSER features), corner
features detected by the FAST corner detector (in red).

road marking type. Each road marking type (Stop, Bike lane,
turn arrows etc.) may have many templates corresponding to
various views, and road and lighting conditions.

At runtime, inverse perspective rectification, MSER de-
tection, FAST corner detection, and HOG descriptor com-
putation are performed on each test image. The signs in
the testing images are then detected and identified based on
the corner features. First, we find putative matching pairs
of corners based on their HOG descriptors. Subsequently,
we refine the result through a structural matching algorithm
that matches the 2D geometry of the corners within the
road marking. The geometry matching takes into account the
possibility of multiple road markings in the image as well
as the possibility of some features in a template not being
detected due to changes in lighting and perspective. More
details of the algorithm can be found in [24].

This detection method seamlessly handles complex road
markings with multiple disconnected components such as the
railroad marking shown in Figure 2. Further it is efficient
enough to run in real time without the use of special hardware
such as GPUs, and scales well with the number of types of
road markings to be detected.

IV. SHADOW BOOSTING FOR IMPROVING ROAD MARKING
DETECTION

We now describe our first contribution in this paper which
extends the above explained road marking detection method
to handle markings in shadow. In outdoor environments,
especially in urban areas, shadows from trees and buildings
on the road surface are not unusual. These can significantly
change the appearance of road markings. An example of a
road marking in shadows of trees is shown in Figure 3. We
propose an algorithm which boosts the brightness of white
road markings in non-uniform shadows in daytime outdoor
environments and operates in real time.

The problem of color constancy is often handled in color
images by converting to some color space such as HSI or
HSV where the illumination and color occupy independent
channels. Thus, colored road markings can be easily ex-



Fig. 3. Examples of detected road markings in shadow regions under
various lighting conditions.

tracted from shadows. However, white road markings and
gray road surfaces share the same hue and saturation so that
the only difference between them is brightness. This makes it
unreliable to extract these road markings from non-uniform
shadows by simply converting the images to a different color
space.

Although many shadow removal algorithms exist and
have achieved good results, they either have a heavy com-
putational burden and thus are not suitable for real-time
applications, or are designed specifically for indoor environ-
ments. For instance, Finlayson, et. al. [5] present an entropy
minimization-based algorithm to remove shadows from color
images while Grest et. al. [7] propose to remove shadows in
indoor environments using color similarity metric. Liu et. al.
[13] describe an approach that preserves texture consistency
but, again, is quite computationally intensive. Miyazaki et.
al. [15] describe a shadow removal method based on a hier-
archical graph cut algorithm, which however is not suitable
for our application as it requires user interaction.

A. Camera sensor model and modeling shadows

Sensors in color cameras convert visible lights to vectors in
RGB color space. For color calibrated cameras, this process
can be formulated using the following model [6]:

Rk = σ

∫
E(λ)S(λ)Qk(λ)dλ, k ∈ {R,G,B} (1)

where E(λ), S(λ) and Qk(λ) are the power spectrums of
the illumination, the spectral reflectance and the camera
sensitivity in channel k, with k ∈ {R,G,B}. σ is a
normalizing constant.

In practice, the sensors are usually sensitive to a narrow
frequency range in each color channel. So the sensitivity
function Qk(λ) can be approximated by a Dirac delta func-
tion:

Qk(λ) = δ(λ− λk) (2)

and thus, the camera sensor model becomes

Rk = σE(λk)S(λk)Qk, k ∈ {R,G,B} (3)

Fig. 4. An example image of the ratio between blue and red channel of an
outdoor daytime scene. Note that the ratios are higher (image is brighter)
in shadowed areas.

In the camera sensor model, the sensitivity function is
determined by the intrinsic property of the camera and is
invariant to object surfaces. The spectral reflectance function,
on the other hand, is constant for the same object surface.
Hence, when a non-uniform shadow is present on the surface
of a object, the difference between the shadow region and
the non-shadow region is the illumination spectrum function
E(λk).

In a daytime outdoor environment, shadows are formed
when the light from the sun is occluded and thus cannot
reach the object surface. However, the objects in the dark
shadow region are still visible. This implies that there is a
ambient light source which provides illumination to all object
surfaces. Let the illumination power spectrum of the sun light
and the ambient light be denoted by Es(λk) and Ea(λk). Let
alpha indicate whether the pixel is in shadow region. The
pixel is in non-shadow region if alpha = 1, and is in shadow
region if alpha = 0. Then the sensor model is:

Rk = σ(αEs(λk) +Ea(λk))S(λk)Qk, k ∈ {R,G,B} (4)

B. Shadow boosting
Our aim is to process the images so that the white road

markings can be extracted more easily from shadows during
the daytime. Assuming that the object surface is white, we
have:

RR = RG = RB (5)

And the ratio between channel i and j is

ri,j =
Ri

Rj
=
αEs(λi) + Ea(λi)

αEs(λj) + Ea(λj)
(6)

We observe that during daytime, the dominated ambient
light source is from the blue sky, which contains a large
portion of Ea(λB). This implies that for white objects, the
shadow information is encoded in the ratio between the blue
and the red channel rB,R, which is one in non-shadow area,
and is greater than one in shadow area. An example image of
rB,R is shown in Figure 4. It shows that on the road surface,
the shadow region is highlighted.

To study the relationship between the ratio rB,R and the
illumination of the pixel, we manually cropped regions from
the same object from outdoor videos and plotted the ratio
rB,R against the logarithm of the illumination. The result
suggests that there is roughly a linear relationship between
them, i.e.,

Illumination = exp(arB,R − b) (7)



Fig. 5. (left) The inverse perspective mapped (IPM) image of a road
marking in shadow region; (right) The boosted IPM image.

where a and b are parameters and can be learned from train-
ing images using a simple line fitting algorithm. Equation
(7) can thus be applied on color images so that the shadow
regions are boosted. An example of the road sign in shadow
region and after shadow boosting is shown in Figure 5.

As can be observed from (7), our shadow boosting method
is extremely efficient and suitable for real-time use as a pre-
processing step in our road marking detection algorithm.

After shadow boosting method, the illumination in the
shadow region is at the same level as in the non-shadow
region, so that region extraction algorithms, such as MSER
[14], can be applied to extract the regions of interest for our
road marking detection and recognition, resulting in greater
accuracy.

V. POSE ESTIMATION FROM ROAD MARKINGS

We now come to the main thrust of this paper, which
involves using road markings to compute vehicle position.
We tried two techniques for this :
• From Perspective-n-Point: The first technique in-

volves solving the well-known Perspective-n-Point
(PnP) problem in computer vision [], wherein the pose
of the camera is calculated from known 3D to 2D point
correspondences.

• From the IPM image: The second technique involves
calculating the position of the camera within the in-
verse perspective mapped (IPM) image. If the extrinsic
calibration of the camera is known, each pixel in the
IPM image corresponds to some physical distance on
the ground, and hence, given the pixel locations of the
corners within the road markings in an IPM image, the
relative pose of the camera to these corner features can
be estimated.

The perspective-n-point method requires knowledge of
3D location so of the features on the road markings. We
employed the visual odometry method of [12] for this
purpose, which tracks points and computes their 3D locations
using stereo-based triangulation and local bundle adjustment.
However, in our experience, the results from the perspective-
n-point method were worse than that using the IPM images.
Hence, we focus on the IPM image method here on.

A. Relative pose estimation using IPM images

The position of the car relative to the detected road signs
can be estimated based on the position of the corners of
the road signs in the IPM images. Let the positions of

the corners in the IPM images and their true locations in
a reference coordinate system be denoted as

[
Ud, Vd

]
and[

Xt, Yt
]
, respectively, where Ud, Vd, Xt, Yt are n×1 vectors,

and n is the number of corners.
There exists a scale s, a 2 × 2 rotation transform matrix

Rs and a 2× 1 translation vector t, such that the following
mean square error is minimized.

s,Rs, t = arg min
s,Rs,t

‖
[
Xt, Yt

]T − (sRs

[
Ud, Vd

]T
+ t)‖22 (8)

Let the position of the car on the IPM image be denoted
by
[
ucar, vcar

]
which can be obtained using extrinsic cali-

bration, assuming the ground is flat. Then the position of the
car

[
xcar, ycar

]
in the same coordinate system as the road

sign can be estimated by:[
xcar, ycar

]T
= sRs

[
ucar, vcar

]T
+ t (9)

A good estimation of s and t can be obtained by:

s = sd/st (10)
t = td − tt (11)

where td and tt are the mean coordinates of the corners in
the IPM image

[
Ud, Vd

]
and the coordinates in the reference

coordinate system
[
Xt, Yt

]
, respectively; sd and st are the

mean scale of the detected and template shapes. Let[
U ′d, V

′
d

]T
=

[
Ud, Vd

]T − td (12)[
X ′t, Y

′
t

]T
=

[
Xt, Yt

]T − tt (13)

Then, sd and st are obtained by:

sd =
1

n
‖
[
Ud, Vd

]T − td‖2 (14)

st =
1

n
‖
[
Xt, Yt

]T − tt‖2 (15)

And the rotation matrix Rs is:

Rs = V TU, where UΣV = SV D(
[
U ′d, V

′
d

]T [
X ′t, Y

′
t

]
) (16)

Thus the pose of the car relative to the road signs can be
estimated. The advantage of this method is that it does not
require any extra knowledge such as location of the 3D points
in space. The drawback is the assumption of a flat ground or,
at least, known pitch of the road, and also the requirement
of the extrinsic calibration of the camera. However, as we
demonstrate, the accuracy of the method compensates for
these drawbacks.

B. Absolute Position estimation

As mentioned above, if the road markings have been
surveyed previously, they can be used to obtain the absolute
pose of the camera using the method provided in the pre-
vious section. However, some modifications to the template
representation and road marking detection are required. We
now describe these.

To obtain absolute camera pose from road markings,
we built a database of corner features within various road
markings containing high-accuracy GPS positions of all these
corners. For each type of road marking, a specific and fixed



Fig. 6. Surveyed points for some road markings used for computing
absolute camera pose

set of corners were surveyed, a few examples of which are
shown in Figure 6. The database is queried using a rough
GPS location and returns a list of corner points that are close
to the query location, along with their GPS coordinates, and
corresponding road marking type. Then the absolute location
of the car can be estimated with high-accuracy by comparing
the position of the detected corners from the IPM images
with the GPS positions of the corresponding corners in the
list of the adjacent road signs.

The template used for road marking detection as described
in Section III relies on detecting arbitrary corner points
within the road markings. However, we now have specific
corners (Figure 6) that we need to detect since only these
have been surveyed. We achieve this by augmenting the
templates used for the road marking detection with the
set of required corners so that each template now contains
a manually labeled set of corners that correspond to the
surveyed GPS points. During runtime, the positions of these
corners are then detected using the snake algorithm [9] on
the IPM images.

The snake algorithm is typically used to find the contour of
a given shape represented by a set of points, in our case the
corner features. The algorithm iteratively finds locations for
the points that minimize an energy function and lock on to a
suitable contour. In our case, the contour is the road marking
and the contrast in illumination between the markings and
the road is sufficient for the algorithm to work reliably. More
details of the snake algorithm are provided in [9].

Once the required corner features and the road marking
have been detected, the GPS coordinates of the corners are
queried in the database using the current rough location of
the vehicle obtained from an inexpensive, commercial GPS
device. Then the procedure of Section V-A can be applied
with the reference coordinate system of the points used being
the GPS coordinates. This yields the pose of the camera in
the same coordinates.

VI. EXPERIMENTS

We present experiments for validating the shadow boosting
algorithm for detecting shadowed roadmarks and for validat-
ing the road marking-based pose estimation algorithm. All
the experiments were performed on a test car setup with a
PointGrey Grasshopper camera running at 20 fps. The car
was equipped with differential GPS, which was used only
for groundtruth location.

A. Road marking detection with shadow boosting

We tested the proposed shadow boosting method on day-
time videos using the road marking dataset presented in [24].
The videos were captured by a color camera mounted on

TABLE I
COMPARISON OF THE ROAD MARKING DETECTION ALGORITHM WITH

AND WITHOUT THE PROPOSED SHADOW BOOSTING METHOD.

w/o shadow boosting w/ shadow boosting
TPR in non-shadow 90.1% 92.0%

TPR in shadow 12.5% 62.5%
FPR 0.9% 1.0%

the roof of the car. Some examples of the detected white
road markings in shadow regions are shown in Figure 3.
The results demonstrate that the proposed method is able to
detect white road markings in shadows, even in patterned
shadow regions.

We compared the performance of detecting road markings
with and without our shadow boosting method. The true
positive detection rates (TPR) in both shadow region and
non-shadow region and the false positive rates of both
methods are summarized in Table I. It can be seen that
shadow boosting effectively increases the detection rate in
shadow regions while maintaining a high detection rate in
non-shadow regions as well. The false positive rate is almost
the same for both methods and the slight increase in the false
positive rate with shadow boosting is not significant. Summa-
rizing these results, shadow boosting improves overall road
marking recognition significantly without any observable
adverse effects in any mode of operation.

The shadow boosting preprocessing algorithm is fast since
it has linear complexity on the size of the images. It takes
less than 1 ms to process an 800x600 image on an Intel-i5
processor.

B. Pose estimation with groundtruth

We now present results for the pose estimation from road
markings. We used road markings that were surveyed apriori
using GPS so as to enable comparison to groundtruth. The
difference of the surveyed GPS points on the road marks and
the location of the car as reported by the on-board DGPS,
was used as groundtruth for the pose estimation algorithm.
Since this only provides groundtruth on location and not
on the orientation of the vehicle, we only report results on
position error.

The algorithm was tested, as before, on videos taken by
cameras mounted on a car. Example of the detected corners
on various road marking using the Snake method on the IPM
images are shown in Figure 7 (left column).

Examples of the estimated car locations and the
groundtruth car trajectory based on various detected road
markings are shown in Figure 7. The map of the lanes, curbs
and road markings are from our surveyed data. We tested
the proposed method on six types of surveyed landmarks
including turn arrows, stop signs, and railroad crossing signs.
The mean absolute error between the estimated car location
and the groundtruth was 0.99 meter on average based on
more than 60 pose estimation instances. Since, in north
america lane widths on most roads are on the order of 3
meters, this provides us a level of positioning accuracy that
is much below the desired lane-level positioning.



Fig. 7. Corner points detected within road marks in the IPM images (in red,
left column) are used to calculate position of a camera mounted on a vehicle
(blue crosses, right column). The blue crosses in each image correspond to
multiple road marking detections, only one of which is shown in the left
column. Groundtruth from DGPS is shown as purple crosses while black
dots represent road boundaries. The difference between the purple and blue
crosses is the pose estimation error, which is, in general, less than 1 meter.

VII. CONCLUSIONS AND DISCUSSION

We presented a novel method for estimating camera pose
from corner features detected on road markings. The method
builds on our previous work on road marking detection [24]
and uses extrinsic camera caibration and feature locations
in a road marking on an inverse perspective mapped image
to estimate pose of the camera with respect to the corner
features.

As our pose estimation method relies on road marking
detection, we also improved the road marking detector to
work under difficult shadow conditions using a novel shadow
boosting method proposed by us. This method improves
overall road marking detection accuracy without affecting
the false positive rate adversely.

The current method for pose estimation assumes a flat
ground or knowledge of the pitch angle of the vehicle. This
assumption can be removed by either detecting the ground
plane or through the perspective-n-point method, which is
more general. Our current results using this method demon-
strated insufficient accuracy. However, we intend to improve
this method in the future. It is also future work to integrate
our pose estimation method into a visual SLAM algorithm as
another type of measurement. This would enable continuous
pose estimation and automatic drift correction within the

SLAM framework.
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