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In Assumed Density filtering (ADF), we choose a distribution that is easy for us
to work with and project the true posterior after each measurement update onto this
distribution family. The moments of the approximate posterior (that lies in the distri-
bution family of our choice) are found by minimizing the KL-divergence between the
true posterior and the distribution of our choice. In the end this comes down to moment
matching. This process is derived below.

Since we desire an approximation to the posterior that is simple to handle, the
approximating distribution will, most likely, be a distribution with a finite moment
vector. This, in turn, means that a good choice for the approximating distribution is
from the exponential family of distributions. Hence, we can write the approximating
distribution as

q(x) = h(x)exp
(

φT (θ)u(x)+ f (x)+g(y)
)

where φ(θ) is the vector of natural parameters and u(x) is the natural statistics vector.
If p(x) is the true posterior after a measurement update, to find the parameters of q(x),
we minimize the KL-divergence

KL(p||q) =
�

x
p(x) log

p(x)
q(x)

Since we need to find the natural parameters of q(x) , we differentiate the KL-
divergence wrt φ(θ) and set the derivative to zero

d
dφ

KL(p||q) = −
d

dφ

�
x

(

p(x)φT (θ)u(x)+ p(x)g(φ)
)

= −
�

x

(

p(x)u(x)+ p(x)
dg(φ)

dφ

)

= 0 (1)

Now, since q(x) is a probability distribution
�

x
q(x) = 1

and differentiating this wrt φ(θ), we get

d
dφ

�
x
q(x) = 0

1
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x
q(x)

(

u(x)+
dg(φ)

dφ

)

= 0

〈u(x)〉q(x) = −
dg(φ)

dφ
(2)

Plugging this result into (1), we get

〈u(x)〉q(x) =
�

x
u(x)p(x)

and hence, the moments of the distribution q(x) that minimize the KL-divergence to the
true posterior are equal to the moments of the true posterior. Hence, assumed density
filtering transforms to moment matching.

It can be seen from the above discussion that ADF requires that the moments of
the true posterior be calculated relatively efficiently. If this is not the case, then ADF
cannot be applied in a straight-forward manner. Note that one of the main differences
between ADF and Variational methods is that ADF minimizes the KL-divergence ac-
cording to the true posterior KL(p||q), while Variational techniques (for eg., Variational
Bayes EM) minimize the reverse KL-divergence KL(q||p). The reverse KL-divergence
is employed since it is assumed that the true posterior is intractable and hence, its mo-
ments cannot be calculated. Thus Variational techniques can be used in such scenarios
where ADF may be inapplicable.

A specific example of ADF where a Gaussian mixture posterior is projected onto
a single Gaussian is given in [2]. ADF is also the underlying principle in the Boyen-
Koller algorithm, given in [1].
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