
Quantitatively Evaluating Performance of RRTs

Ananth Ranganathan
ananth@cc.gatech.edu

CS-7630 Project Report

April 22, 2003

1 Introduction

Rapidly-Exploring Random Trees (RRTs) [LaValle98] have been the focus of a significant amount
of research recently. This simple algorithm provides an efficient randomized technique to tackle the
difficult problem of motion planning involving high dimensional spaces. Various extensions and
modifications have also been proposed to the basic algorithm [LaValle01]. While results regarding
the probabilistic completeness (assurance of finding a path if one exists as the number of nodes
approaches infinity) and the convergence rate of the RRT planner exist [LaValle01], there has
been very little quantitative evaluation of the RRTs with respect to path quality, number of nodes
required to find a solution, and scaling power with increase in dimensionality. This project aims
to rectify this deficit through an empirical study of RRTs applied to various environments and
differing non-holonomic constraints.

This project applies RRTs to a variety of robots, starting with the holonomic case of a point
robot operating in 2-DOF, to a car robot with three trailers operating with non-holonomic con-
straints in a 7-DOF state space. The variation of the number of nodes required to find a path and
the time to find a solution with an increase in state-space dimensionality are studied by making all
the robots operate in the same environment. For the 2-DOF case the path quality obtained by use of
RRTs is compared against the optimal path length. In addition, the performance of the RRT algo-
rithm in environments with narrow passages or tight confines is also considered. The bi-directional
variant is the RRT algorithm used for all experiments in this project, unless otherwise specified.
All experiments are performed in simulation.

The report is laid out as follows. The next section gives an introduction to motion planning
with an emphasis on non-holonomic planning. Previous work in this field is also described here.
The subsequent section decribes the RRT algorithm along with its various variants. Following this,
models of the robots used in the simulations are presented. A description of the experiments and
results, and a discussion of the results obtained comprise the latter part of the report.

1



2 Robot Motion Planning

Motion Planning refers to the problem of planning a sequence of actions that an arbitrarily shaped
robot should execute to move from an initial location to a specified goal location in an environment
containing some obstacles. The position of the robot at any particular instant is defined, in general,
by an n-tuplex =

(
x1,x2,x3, . . . ,xn

)
. The arity of the tuple is the dimensionality of state space in

which the robot exists. However, planning is performed in a configuration space, which may be
distinct from the state space. The transformation from state space to configuration space is effected
so that the robot is represented as a point in configuration space. The configuration spaceC, can
be divided into two mutually exclusive subsets, namely the free configuration spaceCf ree, and the
obstacle spaceCobs. The planner then has to find a path such that each configuration on the path lies
in Cf ree. Motion planning was only given serious attention in the 80s starting with the Generalized
Movers’ Problem discussed below. Subsequently, holonomic and non-holonomic constraints were
added to the basic problem and the latter is, at present, a hot topic of research. A comprehensive
study of the field is contained in [Latombe91].

The basic motion planning problem is also known as the Generalized Movers’ Problem [Schwartz87].
In this problem, the robot and the obstacles are assumed to be polyhedral in shape and no con-
straints are applied on the robot’s movement. Schwartz and Sharir [Schwartz87] first solved this
problem for two dimensions using a computational geometry method with complexityO

(
n5

)
.

However, Reif showed that the Generalized Movers’ Problem for a configuration space of arbitrary
dimensions is at least PSPACE-hard [Reif79]. Hence, even the basic motion planning problem is
intractable due to the curse of dimensionality.

In practice, no robot can change the direction, velocity and acceleration of its motion instanta-
neously. Various constraints have to placed on the motion of the robot to ensure that the physical
constraints operating on the robot are respected. These constraints fall into two categories - Holo-
nomic and Non-holonomic.

2.1 Holonomic and Non-holonomic Constraints

A holonomic constraint is an equality relation among the parameters (or dimensions) of the con-
figuration space. This relation can be solved for one of the parameters and thus, reduces the
dimensionality ofC by one.k such holonomic constraints reduce dimensionality byk. As an ex-
ample, consider the case of a 3-dimensional object operating in 3-dimensional physical space. The
configuration space is 6-DOF as there are three position and orientation coordinates respectively.
If, however, the object is constrained to rotate around a fixed axis relative to itself, thenC’s di-
mensionality is only four. Holonomic constraints do not change the basic nature of the generalized
movers’ problem. Their only effect is to change the definition of the robot’s configuration space
and sometimes, its connectedness. Thus, motion planning with holonomic constraints can be per-
formed in a similar manner to the basic motion planning problem, i.e. through use of geometrical
methods.

A non-holonomic constraint is a non-integrable equation involving configuration space param-
eters and their derivatives. Such a constraint does not reduce the dimensionality ofC, but reduces
the space of possible marginal motions (i.e. the space of velocity directions) at any given con-
figuration. It also renders the problem unsolvable using purely geometric methods. For example,

2



consider the car-like robot in Figure 1.

Figure 1: A car-like robot (from [Svestka93])

For this case,C is ℜ2× [0,2π). At any instant during motion, the velocity of the robot is
constrained to point along the main axis of the robot. If a point inC is (x,y,θ), then this constraint
can be represented mathematically by the relation -

−sinθdx+cosθdy= 0 (1)

It can be shown that this constraint is non-integrable and hence, non-holonomic. Non-holonomic
constraints restrict the geometry of the feasible free paths between two configurations and are
therefore harder to deal with than holonomic ones.

2.2 Kinodynamic Planning

A specialized motion planning problem is that ofKinodynamic planning[Canny88][Donald93].
The kinodynamic planning problem is to synthesize a robot motion subject to simultaneous kine-
matic constraints, such as avoiding obstacles, and dynamic constraints, such as modulus bounds on
velocity, acceleration and force. Kinematic constraints, such as joint limits and obstacles, limit the
configuration of the robot. Dynamic constraints govern the time derivatives of the configurations.
Hence, dynamic constraints are non-holonomic while kinematic constraints need not be.

Kinodynamic planning is generally harder than the corresponding motion planning problem.
This is due to the fact that the robot may be unable to move to a configuration that is valid kine-
matically due to dynamic constraints; an example being finite braking time. In this project, kino-
dynamic planning is not implemented and hence will not be talked about further. Good references
on the topic include [Donald93][Donald95] [LaValle01a].

2.3 Previous Approaches

The major approaches used to plan paths under non-holonomic constraints are -

3



• Roadmaps

• Randomized Potential Fields

Both these methods will be briefly described here.

2.3.1 Roadmaps

The roadmap approach first builds a network of one-dimensional curves, called a roadmap, that
captures the connectivity ofCf ree. Once a roadmapP has been constructed, it is used as a set of
standardized paths. Path planning is reduced to connecting the initial and goal states to points inP
or searching for a path from the start to goal inP. The constructed path is thus the concatenation
of possibly three subpaths - from the start to a point onP, a subpath inP, and from a point on
P to the goal.

Various types of roadmap exist. These include voronoi diagrams, visibility graphs, freeway
nets, silhouttes and probabilistic roadmaps [Latombe91]. Probabilistic roadmaps are illustrated
below as they most closely resemble the RRTs and provide a nice contrast to the way randomization
is used in RRTs.

The probabilistic roadmap algorithm consists of two basic steps [Kavraki98]. In the first step,
the roadmap is generated by randomly sampling the configuration space for points and connecting
these points. Specifically, this is done as follows -

Algorithm GeneratePRM(N)
(∗ S is the PRM that is returned∗)
1. S =φ

2. for i← 1 to N
3. do
4. Generate a random configurationR
5. if R ∈Cobs
6. then Reject it and return to step 4
7. else S.addvertex(R)
8. Select a neighborhood of nodesNc nearR
9. Forn∈ Nc, try and connectn andR using a local planner
10. If connected, S.addedge(xnear,xnew,u)
11. return S

The nodes of the roadmap are generated in Step 1 and the edges in Step 4 above. As may be
noted, the roadmap may consist of multiple unconnected components. A probabilistic roadmap
constructed accoring to the above algorithm is shown in Figure 2. In the second step, called the
query step, the roadmap is searched for a path from the start state to the goal state. As the gener-
ation and searching step are distinct, these can be interleaved if the query fails, and the roadmap
can also be used for multiple queries.

The algorithm thus has four main components that are undefined. These are the the sampling
strategy, the collision-detector, the neighborhood, and the local planner. The neighborhood of a
configuration must be defined so that the local planner is able to reach most of the nodes in a neigh-
borhood. If this is not true, a large number of failed calls to the planner may result. The planner

4



Figure 2: A Probabilistic Roadmap (from [Branicky02])

itself must be extremely simple (a “straight-line” planner) to avoid a large computational overhead
at each call. The ideal sampling strategy is one which samples the environment uniformly, so as
to capture the connectivity completely. Collision detection may be performed using computational
geometric methods.

Advantages of Probabilistic Roadmaps (or PRMs) include the ability to interleave planning
and execution and the reusability of the roadmap. A major short-coming is, however, the inability
of PRMs to capture the connectivity of spaces that have narrow passages or corridor-like features.
This is illustrated in Figure 2. A narrow passage results in a large number of disconnected compo-
nents that the local planner may not be able to join in the query phase, thus requiring a return to
the generation phase. A large amount of work in the literature has gone into finding strategies to
overcome this problem, for example [Amato98][Lien03].

2.3.2 Potential Fields

The idea of potential fields to aid robot navigation is a relatively old one. The basic idea is to let
the robot move under the influence of an artificial potential field produced due to the attractive
influence of the goal configuration and the repulsive influence of theC obstacles. To overcome
the curse of dimensionality, a randomized technique is used. The randomization incorporated may
vary but the aim usually is to build a graph of nodes as in the case of PRMs. This graph may be of
the local minima of the potential field, which can be found by random motion followed by gradient
descent [Barraquand90]. The graph thus obtained, is searched for a path from the start to the goal.
As this method is computationally much more complex than PRMs, it is less widely used. Another
problem is that the definition of the potential function is extremely important in this method and
becomes difficult in an environment with obstacles and kinematic constraints.

3 Rapidly-Exploring Random Trees (RRTs)

RRTs are randomized algorithms that have been designed for a broad class of planning problems.
They can handle non-holonomic constraints and high dimensional spaces. They avoid problems
that are inherent in other commonly used methods, such as the definition of a correct potential

5



function for the field method and choice of an appropriate local planner for the PRMs. Both these
definitions involve the creation of heuristics, which reduces the generality of the method. The name
RRT refers to both a data structure, which is a graph inC space, and an algorithm that generates
the data structure and finds a path by searching through it. A description of the RRT algorithm is
given below.

Let astate transition equation, used to represent the non-holonomic constraints, be ˙x = f (x,u)
where x is a configuration and the vectoru is selected from a set of inputsU . By integratingf over
a fixed time interval∆t, the next state,xnew, can be obtained for a givenx∈C andu∈U . Though
Euler integration,xnew= x+ f (x,u)∆t, can be used, it is usually preferable to use a higher-order
integration technique such as Runge-Kutta. LetNEW STATE(x,u,∆t) denote an algorithm that
returnsxnew. For a given initial state,xinit , an RRT,τ, with K vertices is constructed as follows
[LaValle98] -

Algorithm GENERATERRT(x init ,K,∆t)
1. τ.init

(
xinit

)
;

2. for i← 1 to K
3. do
4. xrand← RANDOM STATE();
5. xnear← NEARESTNEIGHBOR(xrand,τ);
6. u← SELECTINPUT(xrand,xnear);
7. xnew← NEW STATE(xnear,u,∆t);
8. τ.addvertex(xnew);
9. τ.addedge(xnear,xnew,u);
10. return τ

Let ρ be the distance metric on state space. The first vertex ofτ is xinit ∈Cf ree. In each iteration
of the loop, a random state,xrand, is generated and the closest node on the tree,xnear, is found in
terms ofρ. The input,u, which minimizes the distance fromxrand to xnear is selected. Collision
detection may be performed in this step or in the next step where a new state,xnew, is found by
taking a “step” in the direction suggested by theu. xnew is added to the tree as a node, and an edge
from xnear to xnew is also added. The inputu is also stored with the edge as it is required to traverse
the edge.

RRTs have several properties that make them widely applicable to varied planning problems.
The expansion of an RRT is heavily biased towards unexplored regions. For example, in a two
dimensional environment, using a euclidean metric, the tree first grows towards the four corners
and subsequently “fills in the gaps” (Figure 3).

Another major advantage of RRTs over PRMs is that no unconnected components exist in
the tree at any instant, so that the problem of connecting them does not arise. Also, as a set of
predetermined inputs are used to generate new nodes, no local planner is necessary. Finally, an
RRT planner is probabilistically complete under very general conditions, including non-convex
environments.

A number of variations and modifications of the basic RRT algorithm exist. It has been ob-
served that the basic algorithm has difficulty locating the goal. To overcome this a goal-bias
may be added in the growth of the RRT. This can be simply accomplished by modifying the
RANDOMSTATE() function in AlgorithmGENERATERRTto return the goal state with a small

6



Figure 3: RRT growth in a 2-D environment with a Euclidean metric illustrating growth biased
towards unexplored regions (from [LaValle98])

probability p, and a uniformly distributed random state with probability 1− p. The resulting RRT
coverges to the goal much more rapidly. However, ifp is too large then the RRT behaves like a
potential field algorithm and is susceptible to local minima.

Another obvious modification to the basic algorithm is to use the RRT as a bi-directional plan-
ner. Two trees, from the initial and goal states respectively, may be grown and a connection sought
between them. It is seen that such a planner is much faster than a single-tree RRT planner. While
this approach may be extended by growingn RRTs from different points in space, this introduces
the problem of connecting thesen RRTs. In very high-dimensional spaces it is hard for a node to
randomly “come across” another node (of another tree) and hence in such cases the efficiency of
the RRT planner may in fact decrease.

It has been mentioned that theNEW STATE() function in AlgorithmGENERATERRT, re-
turns a new node by taking a “step”,∆t in size. However, the RRT may also be extended greedily,
i.e. by makingNEW STATE() return the most distant node achievable by repeatedly applying the
same input. This facilitates rapid growth of the tree towards unexplored regions but may result in
the RRT overshooting the goal, and hence, in delayed convergence.

4 Implementation and Description of Models

The RRT implementation for this project was done in Python and the GUI was written in the
Python’s Tk interface. The emphasis in the implementation was not on efficiency - for example,
the nearest neighbor search was done using the naiveO(n) method instead of a Kd-tree method -
as all the comparisons were done using the same implementation. Hence, all the results should be
viewed relatively. The RRTs implemented include the bi-directional planner, and the greedy and
non-greedy methods. The default RRT used for the experiments was a bi-directional, non-greedy
algorithm. This was picked as it usually results in the best convergence rate. In cases where the
unidirectional planner was used, it too used a non-greedy technique.

For each model, the system expects a directory as input which contains configuration files
specifying the start and goal states, the discrete input set and the location of obstacles in the en-
vironment. It is a strength of the RRT algorithm that no mention of state space dimensionality is
needed in the program; the code is independent of the dimensionality.

7



The implementation consists of three separate modules - theModelmodule, theRRTmodule,
and theSimulationmodule. These are described below -

• The Model module: This module encapsulates all model specific information, such as robot
shape, state transition equation applicable, collision detection, dimensionality of space and
the distance metric for the model. It consists of five classes in total; one base class and a class
each for each of the models. Themodelbase class is a superclass for thePointModeland the
CarModelclasses. These represent the 2D point object and the car-like robot respectively.
The TrailerModel class is derived fromCarModeland theTrailer3Model is derived from
TrailerModel in turn.

• The RRT module: This module implements the actual RRT algorithm and its variant. It
works on the abstract data structure and does not have to deal with any model-specific infor-
mation, as all such information is abstracted away in theModelmodule described above. The
module consists of two classes -RRTBaseandRRTDual. The first of these is the base class
that defines basic RRT functionality while the latter extends this to provide a bi-directional
planner. Both the greedy and non-greedy versions are implemented as functions inRRTBase.

• The Simulation module: This module handles the GUI part of the application by getting
information from theRRTandModeland displaying it graphically.

4.1 Models used in the simulation

This section describes the models used in the simulation experiments. A total of four different
models are used in the experiments - a 2D holonomic point robot, a 4-DOF car-like robot in 2D
physical space, a 5-DOF car-like robot with a trailer in 2D physical space, and a 7-DOF car-
like robot with three trailers in 2D physical space. This wide spectrum of models is used so that
trends concerning the scaling of RRTs with increase in C-space dimensionality may be effectively
observed. The state transition equations and the metrics used in each of these models are presented
below.

4.1.1 Point Robot

The holonomic point robot has a simple model. The metric used is a Euclidean distance measure.
Let p = (x,y) be a point in configuration space andu = (v,θ) be a input,u ∈U , wherev is the
speed,θ is the direction of speed, andU is the set of inputs. Then the state equations are simply -

ẋ = vcosθ (2)

ẏ = vsinθ

4.1.2 Car-like Robot

A car-like robot is non-holonomic in the sense that it has a finite turning radius and it’s velocity
is constrained to point along its major axis. Referring back to Figure 1, the direction of theRc’s
velocity points alonglc. In addition, the angleφ between the direction ofFc’s velocity andlc, called

8



thesteering angle, is constrained to lie in[−φmax,φmax], whereφmax∈ [0,π]. In the present case,
both the velocity and the steering angle are discrete functions as there exists a finite set of inputs
U . In addition, suppose the length of the car (distance betweenRc andFc) is L. If a configuration
in configuration space is represented asp = (x,y,θ ,φ) andu =

(
v,φi

)
is an input withv being the

velocity andφ being the steering angle, then the state transition equations for change inx andy are
same as in equation 3. The corresponding equations forθ andφ are -

θ̇ =
vtanφ

L
(3)

φ̇ = φi

and a metric, given two configurationsp1 =
(
x1,y1,θ1,φ1

)
and p2 =

(
x2,y2,θ2,φ2

)
, can be

defined as -

mcar =
(
x1−x2

)2 +
(
y1−y2

)2 +
50∗

(
θ1−θ2

)
π

2

+
2∗

(
φ1−φ2

)
π

2

(4)

Note that this is not the only metric possible.

4.1.3 Car-like robot with trailer

Configuration space for a car-like robot with a trailer is five dimensional, with the first four dimen-
sions being the same as above and the fifth dimension being the hitch angle (angle between the ori-
entation of the car and that of the trailer) . The hitch angleα is constrained to lie in[−αmax,αmax].
SupposeH is the hitch length, or length of the rod joining the car to the trailer. If a configuration
is represented asp= (x,y,θ ,φ ,α) andu=

(
v,φi

)
is an input withv being the velocity andφ being

the steering angle, then the state equations forx,y,θ andφ are the same as in equations 3 and 4.
The equation for change inα is -

α̇ =
vsin(θ −α)

H
(5)

and given two configurationsp1 =
(
x1,y1,θ1,φ1,α1

)
and p2 =

(
x2,y2,θ2,φ2,α2

)
, a possible

metric can be defined as -

mtrailer =
(
x1−x2

)2 +
(
y1−y2

)2 +
5∗

(
θ1−θ2

)
π

2

+
2∗

(
φ1−φ2

)
π

2

+
5∗

(
α1−α2

)
π

2

(6)

4.1.4 Car-like robot with three trailers

This case is a straight-forward extension of the previous model. As there are three hitch-angles
and hitch-lengths each, two more terms are added in the state transition equation and the metric
function. Let the three hitch-angles be denoted byα,β ,γ and the corresponding hitch-lengths

9



be H1,H2,H3. Then a configuration can be represented asp = (x,y,θ ,φ ,α,β ,γ) and is seven-
dimensional. Assuming an input as before, the state transition equations forx,y,θ ,φ andα are the
same as in equations 3,4 and 5. The equations governing the change ofβ andγ are -

β̇ =
vcos(θ −α)sin(α−β )

H2
(7)

γ̇ =
vcos(θ −α)cos(α−β )sin(β − γ)

H3

and similarly, given two configurationsp1 =
(
x1,y1,θ1,φ1,α1,β1,γ1

)
andp2 =

(
x2,y2,θ2,φ2,α2,β2,γ@

)
,

a possible metric can be defined as -

m3trailers = mtrailer

5∗
(
β1−β2

)
π

2

+
5∗

(
γ1− γ2

)
π

2

(8)

wheremtrailer is taken from equation 6 above.

5 Description of Experiments

Figure 4: Goal-biased RRT for 2D holonomic robot

The first set of experiments was conducted in the environment (Environment 1) shown in Fig-
ure 4, which also shows the RRT generated for a 2D point robot. This environment was chosen
as it represents a typical cluttered environment used in many other robot experiments. While for
the case of the 2D robot, both the unidirectional and bi-directional planners were used, only the
bidirectional planner was used for other higher dimensional cases as the unidirectional planner was
too slow in these environments. This environment was used with every model and in each case the
robot was required to move from the start place to the goal place which were kept fixed across
all the experiments. The path length, time taken to find a path and the number of nodes required
to find the path were noted during each trial. Every experiment was performed 20 times so as to

10



(a) (b)

Figure 5: Goal-biased bidirectional RRTs for (a) a car-like robot (4-DOF) and (b) a car-like robot
with trailer (5-DOF)

obtain statistically valid results. A tree generated using the car-like robot, and using the trailer
model in the same environment are also shown in Figure 5.

The second set of experiments was conducted to assess the performance of RRTs in an envi-
ronment that requires tighter maneuvering. It is well known that the performance of PRMs suffers
in such environments. As RRTs have the property of growing towards unexplored areas, it is ex-
pected that their performance should not degrade more than slightly in such environments. This set
of experiments was conducted to verify and quantify this hypothesis. The environment (henceforth
known as Environment 2) chosen is shown in Figure 6 along with a path generated for the case of
car-like robot with 3 trailers, a 7-DOF problem. This environment was chosen as the robot has to
get out of a narrow passage and find the entrance to another passage to reach the goal. Even though
the entrance to this adjacent passage is physically close, it is not close in configuration space of
the car-like robots, as these have a finite turning radius and cannot turn into the passage leading to
the goal directly. As before, the goal and start positions were kept fixed and all experiments were
conducted 20 times.

6 Results

For the 2D robot in the two test environments, the mean path length of the path generated by the
bi-directional RRT was on average 1.4 times longer than the optimal path length. The specific
numbers for this case and for the case of the unidirectional planner are given in Figure 7. The
single RRT planner produced a path that was on average 1.5 times longer than the corresponding
optimal paths. This comparison was not extended to the other models as the calculation of shortest
paths for non-holonomic robots is a hard problem and has itself been the focus of much research

11



Figure 6: An environment with tight confines and the path generated for a car-like robot with 3
trailers in 7D configuration space

Single RRT Dual RRT Shortest Path
Mean Std. Dev. Mean Std. Dev.

Environment 1 167.2 17.94 143.29 6.22 111.25
Environment 2 75.6 12.48 77.35 10.28 50.42

Figure 7: Path lengths generated by RRTs compared with the optimal for a 2D robot

(for eg., [Soueres98]). However, it was observed that the average path length produced for even
the 5-DOF robot was less than two times the length of the optimal path in the 2-DOF case, thus
suggesting a generally good path quality.

The comparison of the efficiency of uni-directional (single) RRTs and bidirectional (dual) RRTs
was also done only for the 2D domain. This is because for the other higher-dimensional cases,
the single RRT agorithm fails to find a solution in any reasonable amount of time. Hence, the
superiority of bidirectional RRTs in high dimensional spaces in obvious. However, even for the
2D case, the dual-RRT algorithm outperforms the single-RRT one by a considerable margin. The
results of this comparison are tabulated in Figure 8. This figure shows the average number of nodes
and the time taken to find a path by the two algorithms and the also the corresponding standard
deviations.

It can be observed from the table that the single-RRT’s performance deteriorates noticably in
tight environments such as Environment 2. However, the dual-RRT does not suffer any such loss of
performance. In fact, it takes less time and fewer nodes to find a solution in Environment 2 than in
Environment 1. This should not be construed as an improvement in performance over Environment
1 as the robot is required to traverse a shorter path in Environment 2.

The scaling of the RRT’s performance with increase in dimensionality of state space was eval-
uated by comparing the number of nodes needed to find a solution and the time taken to find this
solution for the various robot models in both the environments. Figure 9 displays the results of
these comparisons. The results present an interesting picture in that they differ from expectations.

12



Single RRT Dual RRT
Mean Std. Dev. Mean Std. Dev.

Environment 1 No. of nodes 1315.3 267.48 236.4 29.53
Time (in secs) 11.09 4.25 0.8635 0.15

Environment 2 No. of nodes 3540.7 1232.38 153.75 33.05
Time (in secs) 161.04 107.13 0.8365 0.28

Figure 8: Path lengths generated by RRTs compared with the optimal for a 2D robot

Though it is well-known that randomized algorithms perform better in high-dimensional spaces
than deterministic ones, this is only due to the fact that no discretization of state space is necessary
for randomized algorithms as in the case of deterministic ones. If such discretization is performed
in high-dimensional spaces, it leads to a large memory requirement and higher computational com-
plexity, often rendering the problem intractable. Randomized algorithms avoid this by sampling
state space instead of discretizing it. However, this does not abrogate the exponential nature of
the algorithm with respect to dimensionality of space. Hence, it can be expected that the RRT
algorithm too should follow this trend.

The results of the experiments, on the other hand, do not support this assumption. In fact in
Environment 1, the 5-DOF case takes less time and less number of nodes than the 4-DOF case. In
Environment 2, the data follows the expected trend although the number of nodes required by the
4-DOF and 5-DOF case are almost equal. Moreover, in all cases the variance of data is extremely
large and renders the comparisons statistically insignificant in many cases (for eg., the time taken
n Environment 2).

This large variance may be attributed to an insufficient number of trials. It is observed that in
some trials the robot reaches the goal with very little exploration of the state space by the RRT
while in others the RRT explores almost the whole state space before a solution is found. This
results in large variance. It can be expected that as the number of trials increases, the variance
in the data caused by this behavior should go down and a statistically significant trend should
emerge. Another explanation for the results, especially for the better performance of the 5-DOF
robot in Environment 1, may be that the complexity with respect to dimensionality of space is not
always exponential but depends on the environment. Thus, in some environments the decrease in
performance with increase in dimensionality may not be evident.

7 Conclusion and Discussion

The following is a short summary of the results obtained in the project -

• The paths produced by the RRT are generally 1.3 to 1.5 times the optimal path length, at
least for the case of holonomic robots; and are generally less than twice this length even for
non-holonomic robots of up to five degrees of freedom.

• The bi-directional RRT planner is much superior to the single RRT one even in the two
dimensional case. For higher dimensional problems, it often fails to find a solution even
after considerable intervals of time.

13



(a) (b)

(c) (d)

Figure 9: Scaling of performance of RRTs with respect to dimensionality of configuration space:
(a) No. of nodes needed to find a solution of Environment 1. (b) Time required to find a solution
in Environment 2. (c) No. of nodes required in Environment 2. (d) Time required in Environment
2.

14



• The single RRT planner also performs worse in tight environments while the bi-directional
planner is unaffected in comparison to sparser environments. While in the experiments in this
project this was found to hold true all the time, it is suspected that the bi-directional planner
may also degrade in performance in environments with narrow passages in configuration
space, though this degradation is expected be much less than in the single-RRT planner.

• No statistically valid conclusions could be obtained regarding the scaling of performance of
the RRTs with increase in configuration space dimensionality. This may be due to insuffi-
cient number of trials or due to the dependence of the RRT’s performance on the environ-
ment. In the latter case, a better approach would be to consider several widely disparate
environments and repeat the tests conducted here on all of them.

Two main problems with the RRTs were observed during the course of this project. Firstly, in
the case of the bi-directional RRTs, the joining of the two trees requires a long time and a lot of
exploration, especially as the number of dimensions increase. For example, it was observed that
in the case of the car-like robot (4-DOF), the two trees would often get to within 5 units of each
other (according to the metric of Equation 4) with a total of only a few hundred nodes generated.
The initial separation between the start and the goal states was about 10000 for Environment 1.
After this phase, the trees would grow slowly and often away from each other before joining up
after more than a thousand more nodes had been generated. This inefficiency can be removed, at
the cost of added complexity to the algorithm, by using a local planner to connect the trees once
their proxomity has been detected.

The second problem present in the RRT algorithm is the lack of indication by the algorithm
if no path exists to the goal. Even though the RRT algorithm knows the environment completely
(i.e., it has a map of the environment), it cannot provide information regarding the reachability
of the goal. This problem was faced in this project when experimenting using the 7-DOF robot
(car robot with three trailers), in Environment 1. No path was found even after an overnight trial
(lasting about 10 hours), but it is uncertain whether this was due to the presence of a very narrow
passage in configuration space or due to the absence of a path from the start state to the goal state.

The initial goal of this project was to gain a quantitative perspective in to the performance of
the RRT algorithm and its variants in various environments and using various robot models. While
the complete goal was not achieved due to statistical insufficiency of the data, the implementation
yielded valuable knowledge about the working of motion planning algorithms. It is hoped that the
insights gained during this project will help in future research on the RRTs in particular and motion
planning in general.

References

[Amato98] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. “OBPRM: An
Obstacle-Based PRM for 3D Workspaces”.In Proceedings of the Workshop on Algorithmic
Foundations of Robotics (WAFR’98), 1998, pp. 155–168.

[Barraquand90] J. Barraquand, J. -C. Latombe. “A Monte-Carlo Algorithm for Path Planning with
Many Degrees of Freedom”,In Proc. IEEE Int. Conf. Robotics and Automation, 1990, pp.
1712–1717.

15



[Branicky02] M. Branicky, S. M. LaValle, K. Olsen, and L. Yang. “Deterministic vs. probabilistic
roadmaps”.Unpublished manuscript, From http://msl.cs.uiuc.edu/ lavalle/papers.html, 2002.

[Canny88] J. Canny, J. Reif, B. Donald, and P. Xavier. “On the complexity of kinodynamic plan-
ning”. In Proc. IEEE Conf. on Foundations of Computer Science. 1988, pp. 306– 316.

[Donald93] B. Donald, P. Xavier, J. Canny, and J. Reif. “Kinodynamic motion planning”.Journal
of the ACM, vol. 40, No. 5, 1993, pp. 1048–1066.

[Donald95] B. Donald and P. Xavier. “Provably good approximation algorithms for optimal kino-
dynamic planning for Cartesian robots and open chain manipulators”.Algorithmica, vol. 14,
no. 6, 1995, pp. 480-530.

[Kavraki98] L. Kavraki and J.-C. Latombe. “Probabilistic Roadmaps for Robot Path Planning”.
Practical Motion Planning in Robotics: Current Approaches and Future Directions, (K.
Gupta and P. del Pobil, eds.), John Wiley, 1998, pp. 33–53.

[Latombe91] J.-C. Latombe. “Robot Motion Planning”. Kluwer Academic Publishers, Boston,
1991.

[LaValle98] S. M. LaValle. “Rapidly-exploring random trees: A new tool for path planning”.
Technical Report 98-11, Iowa State University, 1998.

[LaValle01] S.M. LaValle and J.J. Kufner. “Rapidly-exploring random trees: Progress and
prospects”.In Algorithmic and Computational Robotics: New Directions. (D. Rus B. Donald,
K. Lynch, eds.), 2001, A.K. Peters, pp. 45–59.

[LaValle01a] S. M. LaValle and J. J. Kuffner. “Randomized kinodynamic planning”.In Interna-
tional Journal of Robotics Research, Vol. 20, No. 5, 2001 pp. 378–400.

[Lien03] J. Lien, S. L. Thomas and N. M. Amato. “A General Framework for Sampling on the
Medial Axis of the Free Space”.In Proceedings of the 2003 IEEE International Conference
on Robotics and Automation (ICRA’03), 2003.

[Reif79] J.H. Reif. “Complexity of the Mover’s Problem and Generalizations”.In Proceedings of
the 20th IEEE Symposium on Foundations of Computer Science, 1979, pp. 421–427.

[Schwartz87] J. T. Schwartz, M. Sharir, and J. Hopcroft. “Planning, Geometry, and the Complexity
of Robot Motion”. Norwood, 1987.

[Soueres98] P. Soueres and J. D. Boisonnat. “Optimal trajectories for nonholonomic mobile
robots” In Robot motion planning and control, Lectures Notes in Control and Information
Sciences 229, (J. P. Laumond, Ed.). Springer, 1998, pp. 93–170.

[Svestka93] P. Svestka. “A probabilistic approach to motion planning for car-like robots”.Techni-
cal Report RUU-CS-93-18, Comp. Sci., Utrecht Univ., the Netherlands, 1993.

16


