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Abstract

We illustrate the relationship between message passiogthigns in GMRFs and matrix factorization algorithms.
Specifically, we show that message passing on trees is égpiiva Gaussian elimination, while Loopy Belief Propa-
gation is equivalent to Gauss-Seidel relaxation. Simyjjaecently introduced message passing algorithms sudteas t
Extended Message Passing, and the Embedded Subgraphthaigare also shown to be equivalent to commonly
known matrix methods. We describe efficient extensions tesage passing algorithms based on exploiting these
relationships.

1 Introduction

Gaussian graphical models arise in a number of varied aijulits such as sensor networks [7], robot mapping [1],
and stereo-based depth computations [5]. Consequentilyat®on algorithms for such models have become pop-
ular. A number of these algorithms are based on messagegamsil thus, are amenable to distributed or parallel
implementation making them of further interest.

In this technical report, we describe the close relatignbbiween popular message passing algorithms for GMRFs
and matrix-based algorithms for solving linear systems. céfesider three different algorithms - belief propagation
(BP), both on trees [9] and on graphs with loops [13], the Botézl Message Passing algorithm of Plarre and Kumar
[10], and the Embedded Subgraphs algorithm of Delouilleatt. [3]. These algorithms together span the gamut
of currently available message passing algorithms. BPeawstis exact and non-iterative as is the Extended Message
Passing (EMP) algorithm which works on any graph. Loopy&e#iropagation (LBP) and Embedded Subgraphs (ES)
are iterative algorithms that converge to the exact MAPtgmilbut do not provide the correct marginal covariances.
Additionally BP, LBP and ES are parallelizable whereas EBIRat. Thus, these algorithms form a representative set
of message passing algorithms. As our aim is to foster atqtiaé and intuitive understanding of these algorithms,
we will not specify them formally. If required, these can beifid in the respective references.

Any GMREF is equivalent to a linear system of the foAr= b, wherex is the vector of unknowndj is the error
vector, and the covariance of the systerfiis A~1. Solving large systems by direct matrix inversioxasA 1b, ¥ =
A~1is highly inefficient, and hence the search for alternateréitiyms.

As the running example in this paper, we will consider thepbrim Figure 1 along with its corresponding system
matrix. Since we will only be concerned with the pattern oh+rero elements in the matrix, these are shown using
crosses at the appropriate locations, and we omit the erhatwv of these elements. Further, we will ignore the error
vectorb of the linear system for ease of expaosition, noting thatteldperations performed on the matrix are also to
be performed on the error vector.

2 Beélief Propagation
We start with the standard belief propagation (BP) algaritin acyclic graphs. BP works in two phases. In the first

phase, messages flow up the tree with each node gatheringgesssom its children and using these to compute a
message to its parent. The second phase consists of a dmiaward flow of messages from the root to the leaves.
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Figure 1: The graph and system matrix for the running examgdel in the paper

BP on acyclic GMRFs is exactly equivalent to Gaussian elatiam. The first phase consists of column opera-
tions that reduce the system matrix to triangular form. Tdwoad phase subsequently performs back-substitution to
obtain the mean values and marginal covariances. Sincersh@ffiase triangularizes the matrix, it can be viewed as
performing a Cholesky factorization of the system matrikisTfact will be of use in understanding message passing
algorithms discussed later.

Consider, as an example, the tree in Figure 2(a) along vétkyistem matrix in Figure 2(b). The operations of
message passing in the first phase are shown in Figuresd)(cN6te that no new elements (fill-in) are introduced
during the triangularization process. This is true onlyhia tase of acyclic graphs and can be intuitively seen from the
structure of the system matrix. Each row of the matrix hay onk element to the left of the diagonal, whose column
gives the parent of the node corresponding to the row. Silypitae non-zero elements to the right of the diagonal
correspond to the children of the node.

The scheme discussed above is only possible if we identifoanmode, and hence a tree structure of the graph
under consideration. However, in the Generalized BeliepRgation (GBP) algorithm described by Yedidia et. al.
[14], all the nodes are considered equal and message passikg simply through the exchange of messages between
neighboring nodes. To see the relationship between thiscasgnous message passing scheme and the two-phase
algorithm described above, we note that the message passadafnode, say A, to another node B does not de-
pend on whether A is a parent or a child of B. Hence, each nodecasider itself to be the root of the tree and
perform message-passing accordingly. This results in $fachronous message passing scheme. In effect, if the
graph contain® nodes, this scheme solvasGaussian elimination problems (as discussed above) simadusly,
each corresponding to a tree with a different root node lastiated in Figure 3. Since there is no backsubstitution
phase required now, another way of seeing this is as a mepsagang implementation of the Gauss-Jordan algo-
rithm, which results in the system matrix being reduced ttoakodiagonal matrix from which the MAP solution and
marginal covariances can be recovered directly.

2.1 Loopy Belief Propagation

If the graph has loops then local message passing schenegsda&aussian Elimination break down, since the system
matrix does not get triangularized. This is because in tbegss of zeroing out entries to the right of the diagonal, a
message may potentially introduce new non-zero entriesveder, LBP has been proven to always converge to the
correct MAP solution for GMRFs [13]. How do we explain this?

LBP can be shown to be equivalent to a modified version of tbehlateration method. Jacobi iterations are based
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Figure 2: (a) An example tree illustrating the effect of BPtha system matrix (b) The system matrix is shown with
rows and columns conforming to a pre-ordering on the tre@lje)messages from each node to its parent performs a
row-based elimination operation, zeroing out the elemattise end of the arrows (d) The result is a triangular matrix
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Figure 3: BP on an undirected graph with message passingbataeighboring nodes (shown in (a)) is equivalent to
performing BP simultaneously on the set of trees with algale roots (shown in (b)). The result, as in Gauss-Jordan
elimination for matrices, is a block diagonal matrix. Nobat the matrix ordering corresponding to each tree is a
pre-order sorting of the tree.
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Figure 4: (a) The example graph and the (b) spanning treetasidstrate EBP (c) The matriAr corresponding to
the spanning tree and the (d) cutting maifix

on the equation
Dx¥ = (L+UX*D1p

whereD, —L , and—U are respectively the diagonal, strictly lower trianguéard strictly upper triangular portions of
the system matrix. While, for LBP, the correspondence betwbhe system matriA and the Jacobi iterations is not
straight-forward, the equivalence can be proven. Detdith® proof are not provided here but can be found7h [
Note that this proof relates asynchronous LBP to GausseSedthxation. Synchronous LBP can similarly be shown
to relate to the Jacobi method.

3 Extended Message Passing

LBP does not give the exact MAP solution in a non-iterativexne only because we restrict the algorithm to only
local message passing. What if we allow non-local messaggnn i.e. messages between nodes that are not adjacent
in the graph? This is precisely the approach taken by the Elgiétithm [10]. However, we still do not want every
node to pass messages to every other node as this wouldines@¢n?) algorithm just to compute the messages. The
EMP algorithm overcomes this by splitting the graph into pieces, one of which is a tree and can be solved exactly
using BP while the second piece is solved using Gaussiaiingtiion implemented via non-local message passing.
EMP works by splitting the system matrxinto two matrices so thal = At + K, where the matriAr corresponds
to a spanning tree of the graph aKgdl called the cutting matrix, corresponds to the edges in thphgnot in the
spanning tree. The spanning tree is a good choice for disgete graph since it minimizes the rank of the cutting
matrix that solved using relatively expensive non-locatsage passing.
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Figure 5: The spanning tree matrix and the cutting matrigrgierforming BP on the spanning tree.

Consider the example in Figure 4 showing the EMP setup forunring example. EMP first performs standard
BP on the spanning tree and reduces the spanning tree ntaridiagonal matrix. The messages also simultaneously
keep track of the changes to the cutting makixuring this process. The resulting matrices are shown iargi§.
These matrices are then combined to obtain a modified system.

The crucial observation now is that the nodes involved indiméing matrix, i.e the nodes with edges that are
not in the spanning tree, form an independent subsystentémbe solved without referencing the other nodes in
the system. This is demonstrated in Figure 6. EMP uses thigepty to solve the cutting matrix subsystem using
the Gauss-Jordan algorithm implemented via message gassitlescribed in Section 2. Note that in the worst case,
messages may need to be passed between every pair of nobisssnlisystem but for sparse graphs the number of
messages will, in general, be a lot fewer.

The mean values for the cutting matrix subsystem can berwatatraightaway after the elimination step while
recovering the means of the other nodes involves a backisulm step, which may again require non-local infor-
mation.

Marginal covariances can be obtained by changing the rightaf the linear system. Instead of the measurement
errors, we use a block-diagonal matrix containing iderdiggonal blocks corresponding to the nodes involved in the
cutting matrix. As before, we modify this matrix during mage passing to reflect the BP phase on the tree and then
perform a Gauss-Jordan inversion of the cutting matrix gstiesn to obtain the marginal covariances of the nodes in
the subsystem. Covariances of the remaining nodes are algi@iimed using back-substitution.

3.1 Anincremental version of EMP

Often, the need arises in many applications for increménfialence updates to the graph. This is especially the case
in smoothing applications where additional edges (coordmg to new measurements) or new nodes (corresponding
to new unknowns) may be added to the graph at each time stéipie&fy requires that we do not calculate all the
unknowns when the graph changes slightly but instead uplatealues only of the affected variables. An example
application where the need for an incremental inferencereilgn arises is given in?.

As it stands, the EMP algorithm is not incremental, i.e. tlidiion of even a single edge or node into the graph
requires a full re-computation of all the messages and unkeo The reason for this is the use of Gauss-Jordan
elimination to solve the spanning tree and the cutting matubsystem. By (block-)diagonalizing the matrix, Gauss-
Jordan elimination bakes in information from the rightesiof the linear system into the final diagonized matrix.
A change in the right-side, caused due to an additional nod=lge, can only be dealt with by recomputing the
diagonalization starting from scratch.

Our understanding of the relationship between matrix algms and EMP now comes in handy and can be used
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Figure 6: (a)The combined system after putting togethesplagning tree matrix and the cutting matrix after perform-
ing BP on the spanning tree (b) The nodes involved in thermuttiatrix form an independent subsystem that is solved
using the Gauss-Jordan algorithm.

to make EMP incremental. Instead of diagonalizing the mate triangularize it, i.e. compute the Cholesky factor.
Since the Cholesky factor can be updated incrementally wigen rows/columns/elements are added either to the
matrix or to the right side, the result is an incremental thom.

In practise, this means that we do not perform two-way BP ersffanning tree but instead only computing the
messages flowing from the leaves to the root, as describeekitio® 2. Note that we now need to specify a root and
a tree ordering on the nodes whereas this was not requireldeblfMP algorithm. After addition of new nodes or
edges, the messages differ significantly around the nevdg@domponents but the differences gradually die out as
we move farther away in the tree. Thus, not all the messagéseainee will have to be recomputed. Additionally, if
the changes to the tree are close to the leaves (as is usualbase), the computational savings will be much larger
than if they are close to the root.

The cutting matrix subsystem is also dealt with similarlye hforce an ordering on the cutting matrix subsystem
so that each node only sends messages to nodes below it indéwéng. However, computational savings are less
likely in this case since the nodes in the system are moreatiecsnnected. This emphasizes our previous statement
about the importance of keeping the subsystem as small atbfms

4 Embedded Subgraphs

The Embedded Subgraphs (ES) algorithm [3] tries to overdabm@on-local nature of EMP by clustering the graph
so that most of the loopy nature of the graph is subsumed indlde clusters. The graph is segmented into arbitrary
independent subgraphs, where independence implies #hautigraphs do not share any nodes. We can then form a
“supergraph” consisting of the subgraphs and other sioglabdes that do not belong to any of the subgraphs. We
will call the vertices in the supergraph as “supernodes”.

The subgraphs, since they are independent, form a bloclkx@gnatrix for some ordering of the nodes in the
graph. ES is essentially a block version of LBP, where earhtibn consists of two stages -

1. Each supernode exchanges messages with its adjacemnactise, this is accomplished by restricting message
passing to the nodes containing edges linking differentmments in the supergraph.

2. Each supernode solves for its unknowns through interealsage passing. This is done locally by each node
inverting its supernode matrix block. Singleton nodes dioccoonmunicate in this step.
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Figure 7: (a) Example sensor network with 250 uniformlyritistted sensor nodes. (b) Graphical model for the hidden
variables based on the Delaunay triangulation of the sdnsations. (c) Minimum spanning tree embedded in the
Delaunay graph. (d) A set of disjoint subgraphs. Each syihgima triangle or a singleton node embedded in the
Delaunay triangulation. Disjoint refers to the fact thattmo subgraphs share a common node. Figure and caption

from [3].



Since LBP (or equivalently Gauss-Seidel relaxation) isyanlaranteed to compute the correct means but not the
marginal covariances, ES is also limited in the same martmrever, the block structuring results in faster conver-
gence than LBP.

Clearly, selection of the subgraphs is an important stefhénalgorithm. While large subgraphs increase the
convergence rate, each iteration takes more time due to dtexrmversion involved therein. Subgraphs in the form
of triangles [4] (Figure 7) and polygons [2] have been susftily used.

4.1 Embedded Subgraphsand the Multifrontal algorithm

Consider the case where the supergraph is acyclic, i.e tistecing results in the subsumption of every loop in the
original graph. Clearly, in this case, the algorithm is rietative since the ES algorithm is simply performing BP on
the supergraph.

Now consider an additional twist where we mandate a locatdinate frame for each subgraph. We can do this
by selecting one node per subgraph to be the base node anectioigrall the other nodes in the subgraph to this base
node. The nodes of the subgraph are now transformed to licaoadinate frame with the base node is the origin.
The base node of a subgraph is thus involved in all its extedges. Additionally, we combine the nodes involved
in these external edges (i.e the inter-subgraph edgesaifgeparator” set since these nodes separate the subgraphs
from each other.

The above described procedure transforms each subgraph idique and the supergraph into a clique tree.
The algorithm proceeds by solving each clique internallg #ren exchanging messages with neighboring cliques.
Crucially, the inter-cligue message exchange only chatigesalue of the base node in each subgraph but does not
affect the other nodes.

The algorithm described above is equivalent to the jundtiee algorithm, and in the matrix case, to solving the
system using a Multifrontal Cholesky factorization. A dietd and easy to follow explanation of the use of clique trees
to solve sparse linear systems is available in [8]. Theitised Multifrontal factorization algorithm, implemente
through message passing on a clique tree, is describedimyf Example showing the relationship between subgraphs
and Multifrontal Cholesky is given in Figure 8. Note that teltifrontal algorithm always convertes the GMRF into
a clique tree while the Embedded Subgraphs algorithm witjéneral operate on a cyclic supergraph containing
subgraphs and singleton nodes.

In light of the above connection, we can view the ES algoridsma “halfway house” between LBP on the graph and
the complete junction tree algorithm. While the junctiogetalgorithm aims to construct a tree (the clique tree) from
the loopy graph, the ES algorithm tries to reduce the numblerops so as to increase the convergence rate of LBP
while keeping the algorithm local. The advantage of the E8rithm lies in its combination of efficiency and locality
which can be crucial in some applications, an example beénga networks where long range communication is
usually impossible. The disadvantage is the inability ttaobexact marginal covariances which is only possible in
general through non-local communication.

5 Conclusion

We presented the relationship between some common andgsapeksage passing algorithms and the equivalent
matrix algorithms. In general, every message passing itigofor GMRFs can be viewed as a distributed imple-
mentation of some matrix-based algorithm for solving linegstems. However, an additional constraint in most
message passing algorithms is the need for strong localitpimmunication. In spite of this constraint, we believe
that understanding the link between message passing amck ma&thods can lead to new and improved distributed
algorithms.

We presented two new algorithms obtained by modifying exgstnessage passing algorithms through their un-
derlying matrix counterparts. These are respectively

1. anincremental version of the Extended Message Pasgjogtam

2. an exact Embedded Subgraph algorithm based on the Mult#rCholesky algorithm that can, again, be made
incremental
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Figure 8: lllustration of the Multifrontal algorithm andsirelationship to Embedded Subgraphs. (a) The example
GMREF (small circles on the edges denote measurementsediuitio subgraphs with the base nodes of the subgraphs
shown in yellow. The subgraphs are shown in purple and gregpectively. The red nodes are involved in edges
across subgraphs and form the separator set (b) edgeseavalthe intra-subgraph solution phase (c) edges involved
in the inter-subgraph solution phase (d) the reordere@systatrix has a block diagonal component corresponding

to the independent subgraphs (in purple and green) and esase@peomponent corresponding to the separator set (in
red). Figures taken from [6]
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A major omission in the algorithms we have discussed hetgei€mbedded Trees algorithm of Sudderth [12]. This
algorithm is unique in being an iterative algorithm capaifleomputing the exact meaasd marginal covariances.
However, the algorithm is related to fixed point Richarddenations and hence, is not amenable to a simple matrix
characterization like the other algorithms discussed are.

In our presentation, we have omitted mention of an entiresctd matrix algorithms based on bipartite measure-
ment graphs rather than GMRFs. The most common algorithrisncategory (analogous to the Cholesky factor-
ization for GMRFs) is QR factorization. The reason for thisission is mainly due to the confusion regarding the
semantics of a measurement node in a bipartite graph. Fong&awhile a sensor in a sensor network is clearly a
physical realization of a node in a GMRF, no such counterpadts for a measurement node in a bipartite graph.
Hence, it is the lack of applications rather than a lack ofarsthnding that is the reason for the absence of message
passing algorithms on bipartite graphs.

References

[1] F. Dellaert. Square Root SAM: Simultaneous location arapping via square root information smoothing. In
Robotics: Science and Systems (R3&)5.

[2] V. Delouille, R. Neelamani, and R. Baraniuk. Robustdigtted estimation in sensor networks using the embed-
ded polygons algorithm. Information Processing in Sensor Netwark804.

[3] V. Delouille, R. Neelamani, and R. Baraniuk. Robust Dizited Estimation Using the Embedded Subgraphs
Algorithm. IEEE Transactions on Signal Processjrig(8), August 2006.

[4] V. Delouille, R. Neelamani, V. Chandrasekaran, and RaBaik. The Embedded Triangles Algorithm for Dis-
tributed Estimation in Sensor Networks. IBEE Workshop on Statistical Signal Processing (S3B03.

[5] M. Isard and J. MacCormick. Dense motion and disparitymegtion via loopy belief propagation. Technical
Report MSR-TR-2005-163, Microsoft Research, 2005.

[6] Alexander Kipp, Peter Krauthausen, and Frank DellagRartially Fixed Linearization Approach for Submap-
Parametrized Smoothing and Mapping. Technical Report &V1J-05-25, Georgia Institute of Technology,
2005.

[7] M.A. Paskin and C.E. Guestrin. Robust probabilisticeireince in distributed systems. Bioc. 20" Conf. on
Uncertainty in Al (UAI) Banff, Canada, July 2004.

[8] Mark A. Paskin and Gregory D. Lawrence. Junction tre@gathms for solving sparse linear systems. Technical
Report UCB/CSD-03-1271, EECS Department, University dif@aia, Berkeley, 2003.

[9] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Netwark®lausible InferenceMorgan Kaufmann,
1988.

[10] K. Plarre and P. R. Kumar. Extended message passingthlgdor inference in loopy gaussian graphical models.
Ad Hoc Networks2:153-169, 2004.

[11] A. Pothen and C. Sun. Distributed multifrontal facation using clique trees. Rroc. of the Fifth SIAM Conf.

on Parallel Processing for Scientific Computjmqmages 34—40. Society for Industrial and Applied Matheosati
1992.

[12] E. B. Sudderth, M. J. Wainwright, and A. S. Willsky. Enaoled trees: Estimation of Gaussian Processes on
graphs with cycleslEEE Transactions on Signal Processjig(11):3136—-3150, 2004.

[13] Yair Weiss and William T. Freeman. Correctness of bgdi@pagation in Gaussian graphical models of arbitrary
topology. InAdvances in Neural Information Processing Systems (Nifzg)es 673—-679, 1999.

[14] J.S. Yedidia, W.T. Freeman, and Y.Weiss. Understagmblief propagation and its generalizations. Technical
Report TR-2001-22, Mitsubishi Electric Research Labataty January 2002.

11



