
A Unifying View of Message Passing algorithms for Gaussian
MRFs

Ananth Ranganathan

November 13, 2007

Abstract

We illustrate the relationship between message passing algorithms in GMRFs and matrix factorization algorithms.
Specifically, we show that message passing on trees is equivalent to Gaussian elimination, while Loopy Belief Propa-
gation is equivalent to Gauss-Seidel relaxation. Similarly, recently introduced message passing algorithms such as the
Extended Message Passing, and the Embedded Subgraphs algorithm are also shown to be equivalent to commonly
known matrix methods. We describe efficient extensions to message passing algorithms based on exploiting these
relationships.

1 Introduction

Gaussian graphical models arise in a number of varied applications such as sensor networks [7], robot mapping [1],
and stereo-based depth computations [5]. Consequently, estimation algorithms for such models have become pop-
ular. A number of these algorithms are based on message passing and thus, are amenable to distributed or parallel
implementation making them of further interest.

In this technical report, we describe the close relationship between popular message passing algorithms for GMRFs
and matrix-based algorithms for solving linear systems. Weconsider three different algorithms - belief propagation
(BP), both on trees [9] and on graphs with loops [13], the Extended Message Passing algorithm of Plarre and Kumar
[10], and the Embedded Subgraphs algorithm of Delouille et.al. [3]. These algorithms together span the gamut
of currently available message passing algorithms. BP on trees is exact and non-iterative as is the Extended Message
Passing (EMP) algorithm which works on any graph. Loopy Belief Propagation (LBP) and Embedded Subgraphs (ES)
are iterative algorithms that converge to the exact MAP solution but do not provide the correct marginal covariances.
Additionally BP, LBP and ES are parallelizable whereas EMP is not. Thus, these algorithms form a representative set
of message passing algorithms. As our aim is to foster a qualitative and intuitive understanding of these algorithms,
we will not specify them formally. If required, these can be found in the respective references.

Any GMRF is equivalent to a linear system of the formAx= b, wherex is the vector of unknowns,b is the error
vector, and the covariance of the system isΣ = A−1. Solving large systems by direct matrix inversion asx= A−1b, Σ =
A−1 is highly inefficient, and hence the search for alternate algorithms.

As the running example in this paper, we will consider the graph in Figure 1 along with its corresponding system
matrix. Since we will only be concerned with the pattern of non-zero elements in the matrix, these are shown using
crosses at the appropriate locations, and we omit the exact values of these elements. Further, we will ignore the error
vectorb of the linear system for ease of exposition, noting that all the operations performed on the matrix are also to
be performed on the error vector.

2 Belief Propagation

We start with the standard belief propagation (BP) algorithm on acyclic graphs. BP works in two phases. In the first
phase, messages flow up the tree with each node gathering messages from its children and using these to compute a
message to its parent. The second phase consists of a similardownward flow of messages from the root to the leaves.

1



(a) (b)

Figure 1: The graph and system matrix for the running exampleused in the paper

BP on acyclic GMRFs is exactly equivalent to Gaussian elimination. The first phase consists of column opera-
tions that reduce the system matrix to triangular form. The second phase subsequently performs back-substitution to
obtain the mean values and marginal covariances. Since the first phase triangularizes the matrix, it can be viewed as
performing a Cholesky factorization of the system matrix. This fact will be of use in understanding message passing
algorithms discussed later.

Consider, as an example, the tree in Figure 2(a) along with its system matrix in Figure 2(b). The operations of
message passing in the first phase are shown in Figures 2(c)-(d). Note that no new elements (fill-in) are introduced
during the triangularization process. This is true only in the case of acyclic graphs and can be intuitively seen from the
structure of the system matrix. Each row of the matrix has only one element to the left of the diagonal, whose column
gives the parent of the node corresponding to the row. Similarly the non-zero elements to the right of the diagonal
correspond to the children of the node.

The scheme discussed above is only possible if we identify a root node, and hence a tree structure of the graph
under consideration. However, in the Generalized Belief Propagation (GBP) algorithm described by Yedidia et. al.
[14], all the nodes are considered equal and message passingworks simply through the exchange of messages between
neighboring nodes. To see the relationship between this asynchronous message passing scheme and the two-phase
algorithm described above, we note that the message passed from a node, say A, to another node B does not de-
pend on whether A is a parent or a child of B. Hence, each node can consider itself to be the root of the tree and
perform message-passing accordingly. This results in the asynchronous message passing scheme. In effect, if the
graph containsn nodes, this scheme solvesn Gaussian elimination problems (as discussed above) simultaneously,
each corresponding to a tree with a different root node, as illustrated in Figure 3. Since there is no backsubstitution
phase required now, another way of seeing this is as a messagepassing implementation of the Gauss-Jordan algo-
rithm, which results in the system matrix being reduced to a block diagonal matrix from which the MAP solution and
marginal covariances can be recovered directly.

2.1 Loopy Belief Propagation

If the graph has loops then local message passing schemes based on Gaussian Elimination break down, since the system
matrix does not get triangularized. This is because in the process of zeroing out entries to the right of the diagonal, a
message may potentially introduce new non-zero entries. However, LBP has been proven to always converge to the
correct MAP solution for GMRFs [13]. How do we explain this?

LBP can be shown to be equivalent to a modified version of the Jacobi iteration method. Jacobi iterations are based

2



(a) (b)

(c) (d)

Figure 2: (a) An example tree illustrating the effect of BP onthe system matrix (b) The system matrix is shown with
rows and columns conforming to a pre-ordering on the tree (c)The messages from each node to its parent performs a
row-based elimination operation, zeroing out the elementsat the end of the arrows (d) The result is a triangular matrix

3



(a)

(b)

Figure 3: BP on an undirected graph with message passing between neighboring nodes (shown in (a)) is equivalent to
performing BP simultaneously on the set of trees with all possible roots (shown in (b)). The result, as in Gauss-Jordan
elimination for matrices, is a block diagonal matrix. Note that the matrix ordering corresponding to each tree is a
pre-order sorting of the tree.

4



(a) (b)

(c) (d)

Figure 4: (a) The example graph and the (b) spanning tree usedto illustrate EBP (c) The matrixAT corresponding to
the spanning tree and the (d) cutting matrixK

on the equation

Dx(k) = (L+U)x(k−1) +b

whereD, −L , and−U are respectively the diagonal, strictly lower triangular,and strictly upper triangular portions of
the system matrix. While, for LBP, the correspondence between the system matrixA and the Jacobi iterations is not
straight-forward, the equivalence can be proven. Details of the proof are not provided here but can be found in [?].
Note that this proof relates asynchronous LBP to Gauss-Seidel relaxation. Synchronous LBP can similarly be shown
to relate to the Jacobi method.

3 Extended Message Passing

LBP does not give the exact MAP solution in a non-iterative manner only because we restrict the algorithm to only
local message passing. What if we allow non-local message passing, i.e. messages between nodes that are not adjacent
in the graph? This is precisely the approach taken by the EMP algorithm [10]. However, we still do not want every
node to pass messages to every other node as this would resultin aO(n2) algorithm just to compute the messages. The
EMP algorithm overcomes this by splitting the graph into twopieces, one of which is a tree and can be solved exactly
using BP while the second piece is solved using Gaussian elimination implemented via non-local message passing.

EMP works by splitting the system matrixA into two matrices so thatA= AT +K, where the matrixAT corresponds
to a spanning tree of the graph andK, called the cutting matrix, corresponds to the edges in the graph not in the
spanning tree. The spanning tree is a good choice for dissecting the graph since it minimizes the rank of the cutting
matrix that solved using relatively expensive non-local message passing.

5



(a) (b)

Figure 5: The spanning tree matrix and the cutting matrix after performing BP on the spanning tree.

Consider the example in Figure 4 showing the EMP setup for outrunning example. EMP first performs standard
BP on the spanning tree and reduces the spanning tree matrix to a diagonal matrix. The messages also simultaneously
keep track of the changes to the cutting matrixK during this process. The resulting matrices are shown in Figure 5.
These matrices are then combined to obtain a modified system.

The crucial observation now is that the nodes involved in thecutting matrix, i.e the nodes with edges that are
not in the spanning tree, form an independent subsystem thatcan be solved without referencing the other nodes in
the system. This is demonstrated in Figure 6. EMP uses this property to solve the cutting matrix subsystem using
the Gauss-Jordan algorithm implemented via message passing as described in Section 2. Note that in the worst case,
messages may need to be passed between every pair of nodes in this subsystem but for sparse graphs the number of
messages will, in general, be a lot fewer.

The mean values for the cutting matrix subsystem can be obtained straightaway after the elimination step while
recovering the means of the other nodes involves a back-substitution step, which may again require non-local infor-
mation.

Marginal covariances can be obtained by changing the right side of the linear system. Instead of the measurement
errors, we use a block-diagonal matrix containing identitydiagonal blocks corresponding to the nodes involved in the
cutting matrix. As before, we modify this matrix during message passing to reflect the BP phase on the tree and then
perform a Gauss-Jordan inversion of the cutting matrix subsystem to obtain the marginal covariances of the nodes in
the subsystem. Covariances of the remaining nodes are againobtained using back-substitution.

3.1 An incremental version of EMP

Often, the need arises in many applications for incrementalinference updates to the graph. This is especially the case
in smoothing applications where additional edges (corresponding to new measurements) or new nodes (corresponding
to new unknowns) may be added to the graph at each time step. Efficiency requires that we do not calculate all the
unknowns when the graph changes slightly but instead updatethe values only of the affected variables. An example
application where the need for an incremental inference algorithm arises is given in [?].

As it stands, the EMP algorithm is not incremental, i.e. the addition of even a single edge or node into the graph
requires a full re-computation of all the messages and unknowns. The reason for this is the use of Gauss-Jordan
elimination to solve the spanning tree and the cutting matrix subsystem. By (block-)diagonalizing the matrix, Gauss-
Jordan elimination bakes in information from the right-side of the linear system into the final diagonized matrix.
A change in the right-side, caused due to an additional node or edge, can only be dealt with by recomputing the
diagonalization starting from scratch.

Our understanding of the relationship between matrix algorithms and EMP now comes in handy and can be used

6



(a) (b)

Figure 6: (a)The combined system after putting together thespanning tree matrix and the cutting matrix after perform-
ing BP on the spanning tree (b) The nodes involved in the cutting matrix form an independent subsystem that is solved
using the Gauss-Jordan algorithm.

to make EMP incremental. Instead of diagonalizing the matrix we triangularize it, i.e. compute the Cholesky factor.
Since the Cholesky factor can be updated incrementally whennew rows/columns/elements are added either to the
matrix or to the right side, the result is an incremental algorithm.

In practise, this means that we do not perform two-way BP on the spanning tree but instead only computing the
messages flowing from the leaves to the root, as described in Section 2. Note that we now need to specify a root and
a tree ordering on the nodes whereas this was not required by the EMP algorithm. After addition of new nodes or
edges, the messages differ significantly around the newly added components but the differences gradually die out as
we move farther away in the tree. Thus, not all the messages onthe tree will have to be recomputed. Additionally, if
the changes to the tree are close to the leaves (as is usually the case), the computational savings will be much larger
than if they are close to the root.

The cutting matrix subsystem is also dealt with similarly. We enforce an ordering on the cutting matrix subsystem
so that each node only sends messages to nodes below it in the ordering. However, computational savings are less
likely in this case since the nodes in the system are more densely connected. This emphasizes our previous statement
about the importance of keeping the subsystem as small as possible.

4 Embedded Subgraphs

The Embedded Subgraphs (ES) algorithm [3] tries to overcomethe non-local nature of EMP by clustering the graph
so that most of the loopy nature of the graph is subsumed in thenode clusters. The graph is segmented into arbitrary
independent subgraphs, where independence implies that the subgraphs do not share any nodes. We can then form a
“supergraph” consisting of the subgraphs and other singleton nodes that do not belong to any of the subgraphs. We
will call the vertices in the supergraph as “supernodes”.

The subgraphs, since they are independent, form a block diagonal matrix for some ordering of the nodes in the
graph. ES is essentially a block version of LBP, where each iteration consists of two stages -

1. Each supernode exchanges messages with its adjacent. In practise, this is accomplished by restricting message
passing to the nodes containing edges linking different components in the supergraph.

2. Each supernode solves for its unknowns through internal message passing. This is done locally by each node
inverting its supernode matrix block. Singleton nodes do not communicate in this step.

7



Figure 7: (a) Example sensor network with 250 uniformly distributed sensor nodes. (b) Graphical model for the hidden
variables based on the Delaunay triangulation of the sensorlocations. (c) Minimum spanning tree embedded in the
Delaunay graph. (d) A set of disjoint subgraphs. Each subgraph is a triangle or a singleton node embedded in the
Delaunay triangulation. Disjoint refers to the fact that notwo subgraphs share a common node. Figure and caption
from [3].

8



Since LBP (or equivalently Gauss-Seidel relaxation) is only guaranteed to compute the correct means but not the
marginal covariances, ES is also limited in the same manner.However, the block structuring results in faster conver-
gence than LBP.

Clearly, selection of the subgraphs is an important step in the algorithm. While large subgraphs increase the
convergence rate, each iteration takes more time due to the matrix inversion involved therein. Subgraphs in the form
of triangles [4] (Figure 7) and polygons [2] have been successfully used.

4.1 Embedded Subgraphs and the Multifrontal algorithm

Consider the case where the supergraph is acyclic, i.e the clustering results in the subsumption of every loop in the
original graph. Clearly, in this case, the algorithm is not iterative since the ES algorithm is simply performing BP on
the supergraph.

Now consider an additional twist where we mandate a local coordinate frame for each subgraph. We can do this
by selecting one node per subgraph to be the base node and connecting all the other nodes in the subgraph to this base
node. The nodes of the subgraph are now transformed to lie in acoordinate frame with the base node is the origin.
The base node of a subgraph is thus involved in all its external edges. Additionally, we combine the nodes involved
in these external edges (i.e the inter-subgraph edges) intoa “separator” set since these nodes separate the subgraphs
from each other.

The above described procedure transforms each subgraph into a clique and the supergraph into a clique tree.
The algorithm proceeds by solving each clique internally and then exchanging messages with neighboring cliques.
Crucially, the inter-clique message exchange only changesthe value of the base node in each subgraph but does not
affect the other nodes.

The algorithm described above is equivalent to the junctiontree algorithm, and in the matrix case, to solving the
system using a Multifrontal Cholesky factorization. A detailed and easy to follow explanation of the use of clique trees
to solve sparse linear systems is available in [8]. The distributed Multifrontal factorization algorithm, implemented
through message passing on a clique tree, is described in [11]. An example showing the relationship between subgraphs
and Multifrontal Cholesky is given in Figure 8. Note that theMultifrontal algorithm always convertes the GMRF into
a clique tree while the Embedded Subgraphs algorithm will ingeneral operate on a cyclic supergraph containing
subgraphs and singleton nodes.

In light of the above connection, we can view the ES algorithmas a “halfway house” between LBP on the graph and
the complete junction tree algorithm. While the junction tree algorithm aims to construct a tree (the clique tree) from
the loopy graph, the ES algorithm tries to reduce the number of loops so as to increase the convergence rate of LBP
while keeping the algorithm local. The advantage of the ES algorithm lies in its combination of efficiency and locality
which can be crucial in some applications, an example being sensor networks where long range communication is
usually impossible. The disadvantage is the inability to obtain exact marginal covariances which is only possible in
general through non-local communication.

5 Conclusion

We presented the relationship between some common and popular message passing algorithms and the equivalent
matrix algorithms. In general, every message passing algorithm for GMRFs can be viewed as a distributed imple-
mentation of some matrix-based algorithm for solving linear systems. However, an additional constraint in most
message passing algorithms is the need for strong locality in communication. In spite of this constraint, we believe
that understanding the link between message passing and matrix methods can lead to new and improved distributed
algorithms.

We presented two new algorithms obtained by modifying existing message passing algorithms through their un-
derlying matrix counterparts. These are respectively

1. an incremental version of the Extended Message Passing algorithm

2. an exact Embedded Subgraph algorithm based on the Multifrontal Cholesky algorithm that can, again, be made
incremental

9



12

1

2

3

4

5

6

7

8

0 1 2 3

(a)

12

1

2

3

4

5

6

7

8

0 1 2 3

(b)

12

1

2

3

4

5

6

7

8

0 1 2 3

(c)

(d)

Figure 8: Illustration of the Multifrontal algorithm and its relationship to Embedded Subgraphs. (a) The example
GMRF (small circles on the edges denote measurements) divided into subgraphs with the base nodes of the subgraphs
shown in yellow. The subgraphs are shown in purple and green respectively. The red nodes are involved in edges
across subgraphs and form the separator set (b) edges involved in the intra-subgraph solution phase (c) edges involved
in the inter-subgraph solution phase (d) the reordered system matrix has a block diagonal component corresponding
to the independent subgraphs (in purple and green) and a separator component corresponding to the separator set (in
red). Figures taken from [6]

10



A major omission in the algorithms we have discussed here is the Embedded Trees algorithm of Sudderth [12]. This
algorithm is unique in being an iterative algorithm capableof computing the exact meansandmarginal covariances.
However, the algorithm is related to fixed point Richardson iterations and hence, is not amenable to a simple matrix
characterization like the other algorithms discussed are.

In our presentation, we have omitted mention of an entire class of matrix algorithms based on bipartite measure-
ment graphs rather than GMRFs. The most common algorithm in this category (analogous to the Cholesky factor-
ization for GMRFs) is QR factorization. The reason for this omission is mainly due to the confusion regarding the
semantics of a measurement node in a bipartite graph. For example, while a sensor in a sensor network is clearly a
physical realization of a node in a GMRF, no such counterpartexists for a measurement node in a bipartite graph.
Hence, it is the lack of applications rather than a lack of understanding that is the reason for the absence of message
passing algorithms on bipartite graphs.

References

[1] F. Dellaert. Square Root SAM: Simultaneous location andmapping via square root information smoothing. In
Robotics: Science and Systems (RSS), 2005.

[2] V. Delouille, R. Neelamani, and R. Baraniuk. Robust distributed estimation in sensor networks using the embed-
ded polygons algorithm. InInformation Processing in Sensor Networks, 2004.

[3] V. Delouille, R. Neelamani, and R. Baraniuk. Robust Distributed Estimation Using the Embedded Subgraphs
Algorithm. IEEE Transactions on Signal Processing, 54(8), August 2006.

[4] V. Delouille, R. Neelamani, V. Chandrasekaran, and R. Baraniuk. The Embedded Triangles Algorithm for Dis-
tributed Estimation in Sensor Networks. InIEEE Workshop on Statistical Signal Processing (SSP), 2003.

[5] M. Isard and J. MacCormick. Dense motion and disparity estimation via loopy belief propagation. Technical
Report MSR-TR-2005-163, Microsoft Research, 2005.

[6] Alexander Kipp, Peter Krauthausen, and Frank Dellaert.A Partially Fixed Linearization Approach for Submap-
Parametrized Smoothing and Mapping. Technical Report GIT-GVU-05-25, Georgia Institute of Technology,
2005.

[7] M.A. Paskin and C.E. Guestrin. Robust probabilistic inference in distributed systems. InProc. 20th Conf. on
Uncertainty in AI (UAI), Banff, Canada, July 2004.

[8] Mark A. Paskin and Gregory D. Lawrence. Junction tree algorithms for solving sparse linear systems. Technical
Report UCB/CSD-03-1271, EECS Department, University of California, Berkeley, 2003.

[9] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networksof Plausible Inference. Morgan Kaufmann,
1988.

[10] K. Plarre and P. R. Kumar. Extended message passing algorithm for inference in loopy gaussian graphical models.
Ad Hoc Networks, 2:153–169, 2004.

[11] A. Pothen and C. Sun. Distributed multifrontal factorization using clique trees. InProc. of the Fifth SIAM Conf.
on Parallel Processing for Scientific Computing, pages 34–40. Society for Industrial and Applied Mathematics,
1992.

[12] E. B. Sudderth, M. J. Wainwright, and A. S. Willsky. Embedded trees: Estimation of Gaussian Processes on
graphs with cycles.IEEE Transactions on Signal Processing, 52(11):3136–3150, 2004.

[13] Yair Weiss and William T. Freeman. Correctness of belief propagation in Gaussian graphical models of arbitrary
topology. InAdvances in Neural Information Processing Systems (NIPS), pages 673–679, 1999.

[14] J.S. Yedidia, W.T. Freeman, and Y.Weiss. Understanding belief propagation and its generalizations. Technical
Report TR-2001-22, Mitsubishi Electric Research Laboratories, January 2002.

11


