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Abstract— Probabilistic techniques have become the mainstay
of robotic mapping, particularly for generating metric maps. In
previous work, we have presented a hitherto nonexistent general
purpose probabilistic framework for dealing with topological
mapping. This involves the creation of Probabilistic Topological
Maps (PTMs), a sample-based representation that approximates
the posterior distribution over topologies given available sensor
measurements. The PTM is inferred using Markov Chain Monte
Carlo (MCMC) that overcomes the combinatorial nature of the
problem. In this paper, we address the problem of integrating
appearance measurements into the PTM framework. Specifically,
we consider appearance measurements in the form of panoramic
images obtained from a camera rig mounted on a robot. We also
propose improvements to the efficiency of the MCMC algorithm
through the use of an intelligent data-driven proposal distribu-
tion. We present experiments that illustrate the robustness and
wide applicability of our algorithm.

I. INTRODUCTION

Mapping an unknown and uninstrumented environment is
one of the foremost problems in robotics. For this purpose,
both metric maps [3] [12] and topological maps [15] [1]
have been explored in depth as viable representations of
the environment. In both cases, probabilistic approaches have
had great success in dealing with the inherent uncertainties
associated with robot sensori-motor control and perception,
that would otherwise make map-building a very brittle process.

This work deals with the problem of topological mapping.
Topological maps attempt to capture the spatial connectivity
of the environment by representing it as a graph with arcs
connecting the nodes that designate significant places in the
environment, such as corridor junctions and room entrances
[10]. Arguably the hardest problem in topological mapping is
the perceptual aliasing problem, which is an instance of the
data association problem, also variously known as “closing the
loop” [5] or “the revisiting problem” [18]. It is the problem
of determining whether sensor measurements taken at different
points in time correspond to the same physical location. When
a robot receives a new measurement, it has to decide whether
to assign this measurement to one of the locations it has visited
previously, or to a completely new location. The aliasing
problem is hard because the number of possible choices grows
combinatorially with the number of measurements.

In previous work [14], we presented the concept of Proba-
bilistic Topological Maps (PTMs) that deal with the perceptual
aliasing problem in a systematic probabilistic manner. A
PTM is a probability distribution over the discrete space of
all possible topologies, and is obtained by computing the

Fig. 1. Camera rig mounted on the robot to obtain panoramic images

posterior distribution over this space given the measurements.
However, due to the combinatorial size of the state space, it
is not possible to compute the PTM analytically, and hence,
a sample-based approximation to the posterior distribution
is used for this purpose. The sample-based approximation,
in turn, is computed using the Markov Chain Monte Carlo
(MCMC) sampling algorithm [4] that overcomes the combi-
natorial nature of the state space.

The intuitive reason for computing the posterior is to solve
the aliasing problem for topologies in a systematic manner.
The set of all possible correspondences between measurements
and the physical locations from which the measurements are
taken is exactly the set of all possible topologies. By inferring
the posterior on this set, whereby each topology is assigned
a probability, it is possible to locate the more probable
topologies without committing to a specific correspondence
at each step, as most current algorithms do. Thus, a general
solution to the perceptual aliasing problem is obtained. Even in
pathological environments, where almost all current algorithms
fail, our technique provides a quantification of uncertainty by
pegging a probability of correctness to each topology.

In [14], we considered the case where the measurements
consist of odometry measurements alone. We demonstrated
that even in this case, with infinite perceptual aliasing, PTMs
perform well. However, the use of appearance information,
if available, clearly provides an advantage which was not
utilized in that work. Further, the proposal distribution used to
mix the Markov chain in state space was constructed using a
simple split-merge algorithm that does not take into account



Fig. 2. A panoramic image obtained from the robot camera rig

any domain knowledge. This leads to slow mixing and results
in inefficiency in some cases.

In this paper, we address both the above shortcomings
in our previous work. Hence, our contribution is two-fold.
First, we present a general model for incorporating appearance
measurements in the construction of PTMs. As a specific
instance of this model, we propose the use of panoramic
images obtained from a camera rig mounted on a robot (shown
in Figure 1), to obtain appearance measurements. An example
of such a panoramic image is given in Figure 2.

As a second major contribution, we provide a new data-
driven proposal distribution for use in the MCMC sampler.
The proposal uses domain knowledge in the form of expected
landmark locations, and leads to faster mixing of the Markov
chain, thus making the PTM algorithm more efficient. A more
general aspect of this work is that it demonstrates a means to
include pose information into any MCMC proposal that deals
with the space of all possible clusterings. This is true since the
space of topologies is exactly the same as that of all possible
clusterings of available measurements.

We use the Fourier signature [6] of a panoramic image
as the appearance measurements in our appearance model.
Fourier signatures, which have previously been used in the
context of localization using omni-directional vision [11],
are a low-dimensional representation of images using Fourier
coefficients. They allow inexpensive matching of images to
determine correspondence to physical locations. Further, due
to the periodicity of panoramic images, Fourier signatures are
rotation-invariant. This property is of prime importance when
determining correspondence since the robot may be moving
in different directions when the images are obtained. We
present a generative model for the appearance measurements
that enables their use in the PTM algorithm. The advantage
of using appearance measurements in addition to odometry is
illustrated through experiments.

In subsequent sections, after providing related work, we
give a brief overview of PTMs and the means for estimating
the posterior over the space of topologies through MCMC
sampling. Subsequently, we describe our appearance model
for use in the PTM algorithm, and this is followed by an
explanation of the data-driven proposal distribution. In Section
VI, we give details of the experiments we conducted and the
results obtained, following which we conclude.

II. RELATED WORK

Maintaining the posterior distribution over the space of
topologies results in a systematic and robust solution to the
aliasing problem that plagues topological mapping. Though

probabilistic methods have been used in conjunction with
topological maps before, none exist that are capable of dealing
with the inference of the posterior distribution over the space
of topologies. A recent approach by Remolina and Kuipers
[15], improved upon by Savelli and Kuipers [16], gives an
algorithm to build a tree of all possible topological maps that
conform to the measurements, but in a non-probabilistic man-
ner . Most instances of previous work extant in the literature
that incorporate uncertainty in topological map representations
do not deal with general topological maps, but with the use
of Markov decision processes to learn a policy that the robot
follows to navigate the environment.

Shatkay and Kaelbling [17] use the Baum-Welch algorithm,
a variant of the EM algorithm used in the context of HMMs, to
solve the aliasing problem for topological mapping. However,
this approach is well-known to be prone to local minima in
the solution space. The use of a limited, multiple-hypothesis
space over correspondences through the use of POMDPs is
prevalent also in the literature [20].

Others use a non-probabilistic approach to the perceptual
aliasing problem by applying a clustering algorithm to the
measurements to identify distinctive places, an instance being
[9]. Numerous approaches also exist for the use of local
appearance in place recognition, for example [19] [2]. How-
ever, all these methods are inherently brittle in the sense that
they are prone to failing silently in environments with severe
perceptual aliasing.

Data-driven proposals have previously been used various
fields - for example in Computer Vision for image segmenta-
tion [21], and in Statistics to analyze mixture models [7]. In
general, data-driven proposals cause a significant speed-up in
the sampling algorithm in cases where the state space being
considered is enormous. In such cases, a normal proposal
would provide a number of samples that are from regions of
low probability and hence get rejected, wasting the computa-
tion involved in their generation. A proposal that utilizes the
data, on the other hand, directs the proposed samples towards
regions of higher probability, thus increasing the MCMC
acceptance ratio and reducing the number of cases where the
proposed sample is rejected.

III. PROBABILISTIC TOPOLOGICAL MAPS

We begin by giving a brief overview of Probabilistic Topo-
logical Maps (PTMs). A PTM is a sample-based represen-
tation that approximates the posterior distribution P (T |Z)
over topologies T given measurements Z. While the space of
possible maps is combinatorial, a probability density over this
space can be approximated by drawing a sample of possible
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Fig. 3. Two topologies with 6 observations each corresponding to set
partitions (a) with six landmarks ({0}, {1}, {2}, {3}, {4}, {5}) and (b)
with five landmarks({0}, {1, 5}, {2}, {3}, {4}) where the second and sixth
measurement are from the same landmark.

maps from the distribution. Using the samples, it is possible
to construct a histogram on the support of this sample set.

For the purpose of this work, we assume the availability of
a “landmark detector” that detects a landmark when it is near.
While the problem of landmark detection is an important one
in itself, we do not consider it in this paper. No knowledge of
the correspondence between landmark measurements and the
actual landmarks is given to the robot - indeed, that is exactly
the topology that we seek. The problem then is to compute
the discrete posterior probability distribution P (T |Z) over the
space of topologies.

A. Topologies as set partitions

To infer the PTM from the measurements, we exploit
the equivalence between topologies of an environment and
set partitions of landmark measurements, which group the
measurements into a set of equivalence classes. When all the
measurements of the same landmark are clustered together,
this naturally defines a partition on the set of measurements.
Let the set of measurements be denoted as Z = {zi|i ∈
[1, N ]}, where N is the number of measurements (the number
of landmarks seen by the robot). If the number of distinct
landmarks in the environment is M (M ≤ N ), then a topology
T can be represented as the set partition of the set Z, T =
{Sj | j ∈ [1,M ]}, where each Sj is a set of measurements
such that Sj1 ∩ Sj2 = φ ∀j1, j2 ∈ [1,M ], j1 6= j2

and
⋃M

j=1
Sj = Z. The set Sj contains the measurements

corresponding to the jth distinct landmark in the environment.
As an aside, we note that we only deal with planar topologies
in this work.

It can be seen that a topology is nothing but an assignment
of measurements to sets in the partition. This results in the
above mentioned isomorphism between topologies and set
partitions. An example of the encoding of topologies as set
partitions is shown in Figure 3. The number of possible
topologies is thus equal to the number of set partitions of the
set of measurements (and hence, also to the set of all possible
clusterings of the set of measurements). This number is called
the Bell number [13], and grows hyper-exponentially with the
number of measurements.

Algorithm 1 The Metropolis-Hastings algorithm
1) Start with a valid initial topology Tt, then iterate once for each

desired sample
2) Propose a new topology T

′

t using the proposal distribution
Q(Tt → T ′

t )
3) Calculate the acceptance ratio

a =
P (T ′

t |Z
t)

P (Tt|Zt)

Q(T ′

t → Tt)

Q(Tt → T ′

t
)

(1)

where Ztis the set of measurements observed up to and
including time t.

4) With probability p = min(1, a), accept T ′

t and set Tt ← T ′

t .
If rejected we keep the state unchanged (i.e. return Tt as a
sample).

B. Inferring PTMs using Markov chain Monte Carlo

The aim of inference in the space of topologies is to obtain
the posterior probability distribution on topologies P (T |Z).
We use Markov chain Monte Carlo (MCMC) sampling to per-
form inference in the combinatorial state space of topologies,

All MCMC methods work by running a Markov chain over
the state space with the property that the chain ultimately
converges to the target distribution of interest, in this case
the posterior over topologies. Once the chain has converged,
subsequent states visited by the chain are considered to be
samples from the target distribution. The Markov chain itself
is generated using a proposal distribution that is used to
propose the next state in the chain, a move in state space,
possibly by conditioning on the current state. The Metropolis-
Hastings algorithm, a general MCMC method, provides a
technique whereby the Markov chain can converge to the
target distribution using any arbitrary proposal distribution, the
only important restriction being that the chain be capable of
reaching all the states in the state space.

The pseudo-code to generate a sequence of samples from
the posterior distribution P (T |Z) over topologies T using
the Metropolis-Hastings algorithm is shown in Algorithm 1
(adapted from [4]). Intuitively, the algorithm samples from the
desired probability distribution P (T |Z) by rejecting a fraction
of the moves generated by a proposal distribution Q(T ′

t ;Tt),
where Tt is the current state and T ′

t is the proposed state. The
fraction of moves rejected is governed by the acceptance ratio
a given by (1), the computation of which requires the design
of a proposal density and evaluation of the target density.

The target distribution P (T |Z) is computed through the use
of Bayes Law

P (T |Z) ∝ P (Z|T )P (T ) (2)

where P (T ) is a prior on topologies and P (Z|T ) is the
observation likelihood. In [14], we considered the case where
Z is just the set of odometry measurements. The odometry
likelihood was computed by Rao-Blackwellization of land-
mark locations using a prior distribution on the landmark
locations. We used a simple split-merge proposal distribution
to move the Markov chain through the state space. For more
details, see [14].



IV. INCORPORATING APPEARANCE MODELS IN PTMS

If, in addition to odometry, appearance measurements are
also taken into consideration, the set of measurements Z con-
sists of odometry measurements O and appearance measure-
ments A, so that Z = {A,O}. Also, note that the odometry
and appearance measurements are conditionally independent
given the topology T , since the topology determines the cor-
respondence between measurements and physical landmarks.
Using this independence in (2), we get

P (T | O,A) = kP (O,A|T )P (T )

= kP (O|T )P (A|T )P (T ) (3)

where k is the normalization constant. The evaluation of
the odometry likelihood P (O|T ) is discussed in [14] and is
not considered here. We deal with modeling appearance to
evaluate the appearance likelihood P (A|T ) in this section.

Fourier signatures, which we use as appearance measure-
ments, are computed by calculating the 1-D Fourier transform
of each row of the panoramic image and storing only the first
few coefficients corresponding to the lower spatial frequencies
[11]. While more popular dimensionality reduction techniques
such as PCA [8] exist, the drawback of such systems is the
need to further preprocess the measurement images in order
to obtain rotational invariance. In contrast, the magnitudes of
Fourier coefficients in a Fourier signature are rotation-invariant
since panoramic images are periodic. Hence, a Fourier signa-
ture yields a low-dimensional, rotation-invariant representation
of the image. We use images obtained from an eight-camera rig
mounted on a robot to produce panoramic images as shown in
Figures 1 and 2. The eight images thus obtained are mosaicked
automatically to form a 3600 view of the environment.

In our case, Fourier signatures are calculated using a modifi-
cation of the procedure given in [11]. First, a single row image
obtained by averaging the rows of the input image is calculated
and subsequently, the one-dimensional Fourier transform of
this image is performed. This gives us the Fourier signature
of the image. It is to be noted that Fourier signatures do not
comprise an error-free source of measurements. If that were
the case, then the need for a probabilistic treatment would
not arise. Most of the errors in the measurements take the
form of false positives, in the sense that images from distinct
physical locations often yield similar Fourier signatures. This
is due to perceptual aliasing and the extreme compression of
the image data into a Fourier signature. However, when used
in the PTM algorithm in conjunction with odometry, they still
produce good results as we demonstrate in Section VI.

We begin by denoting the set of appearance measurements
as A = {ai|1 ≤ i ≤ N}, where N is the number of
measurements (the number of landmarks observed by the robot
during its run). Let the number of distinct landmarks in the
environment be M (M ≤ N ). Evaluation of the appearance
likelihood is performed by introducing the hidden parameter
Y = {yj |1 ≤ j ≤ M}, where each yj corresponds to a
distinct landmark. The hidden parameter denotes the “true
appearance” of each landmark in the topology. As we do not

1,5 2,6 7

4 3

(a)

y1

a1 a5

y2

a2 a6

y3 y4 y5

a3 a4 a7

(b)
Fig. 4. The Bayesian network (b) that encodes the independence assumptions
for the appearance measurements in the topology (a) given the true appearance
Y = {y1, . . . , y5} at all the landmark locations.

need to compute Y when inferring topologies, we marginalize
over it so that

P (A | T ) =

∫

Y

P (A | Y, T )P (Y | T ) (4)

where P (A|Y, T ) is the measurement model and P (Y | T ) is
the prior on the appearance. We assume that the appearance
of a landmark is independent of all other landmarks, so that
each yj is independent of all other yj′ . The prior P (Y | T )
can thus be factored into a product of priors on the individual
yj .

P (Y | T ) =

M
∏

j=1

P (yj) (5)

As seen in Section III-A, the topology T introduces a
partition on the set of appearance measurements by deter-
mining which “true appearance” yj each measurement ai

actually measures, i.e the partition encodes the correspondence
between the set A and the set Y . Also, given Y , the likelihood
of the appearance can be factored into a product of likelihoods
of the individual appearance instances. This is illustrated using
an example topology in Figure 4, where the Bayesian network
encodes the independence assumptions in the appearance
measurements. Hence, denoting the jth set in the partition
as Sj , we rewrite P (A | Y, T ) as -

P (A | Y, T ) =

M
∏

j=1

∏

ai∈Sj

P (ai | yj) (6)

where the dependence on T is subsumed in the partition.
Combining Equations (4), (5) and (6), we get the expression
for the appearance likelihood as

P (A | T ) =

M
∏

j=1

∫

yj

P (yj)
∏

ai∈Sj

P (ai | yj) (7)

In our case, each appearance measurement ai is a Fourier
signature vector given as ai = {ai1, ai2, . . . , aiK}, where aik

is the kth Fourier component in the Fourier signature. Also,



we assume a similar vector form for the hidden appearance
variables yi, so that yi = {yi1, yi2, . . . , yiK}. Moreover, we
assume that the frequency components of the Fourier signature
given the corresponding appearance variable are independent,
and hence, can be factored, as can be the prior over the hidden
appearance variables. Consequently, we can rewrite (7) to get
the expression for the appearance likelihood as

P (A | T ) =
M
∏

j=1

K
∏

k=1

∫

yjk

P (yjk)
∏

ai∈Sj

P (aik | yjk) (8)

In the above equation, P (yjk) is a prior on appearance in the
environment, and P (aik | yjk) is the appearance measurement
model. Evaluation of the appearance likelihood requires the
specification of these two quantities.

We assume the measurement noise in the Fourier signatures
to be Gaussian distributed so that the model for appearance
instance aik, belonging to the jth set Sj , is also a Gaussian
centered around the “true appearance” yjk with variance σ2

jk.
Since we do not know either of these parameters, we further
model them hierarchically in a proper Bayesian manner. Hi-
erarchical conjugate priors are placed on σ2

jk and yjk : the
prior on σ2

jk being an inverse gamma distribution while the
prior on yjk is taken to be a Gaussian distribution with mean

µ and variance
σ2

jk

κ
. This particular choice of conjugate priors

allows the integration in (8) to be performed analytically. The
appearance model can then be summarized as

aik ∼ N (aik; yjk, σ2

jk) where ai ∈ Sj

yjk ∼ N (yjk;µ,
σ2

jk

κ
) (9)

σ2

jk ∼ IG(σ−2

jk ;αk, βk)

where IG denotes the inverse gamma distribution. Note that
while the value of κ is generally chosen so that the prior on
yjk is vague, we usually have some extra “world knowledge”
that can be used to set the values of the hyper-parameters αk

and βk. For example, if we expect the value of the Fourier
signature to vary by only a small amount in the neighborhood
of a given location, the prior on σ2

jk should reflect this
knowledge by being peaked about a specific value.

The generative model for Fourier signature measurements
specified by (9) is now used to compute the appearance
likelihood given by (8). In addition to integrating over yjk, we
also integrate over the variance σ2

jk as we are not interested
in its value. It follows that

P (A | T ) =

M
∏

j=1

K
∏

k=1

∫

σ2

jk

IG(αk, βk)×

∫

yjk

N (µ,
σ2

jk

κ
)
(

N (yjk, σ2

jk)
)|Sj | (10)

Due to the use of conjugate priors, this computation can be
performed analytically.

Now that the appearance likelihood can be evaluated from
(10), this can be used in (3) to compute the target distribution.

Algorithm 2 The Proposal Distribution

1) Select a merge or a split with probability
{

NM

NM +NS
,

NS

NM +NS

}

2) Merge move:
• if T contains only one set, re-propose T ′ = T , hence

r = 1
• otherwise select two sets at random, say R and S

a) Let D be the distance between the locations cor-
responding to R and S obtained by optimizing the
odometry wrt T

b) T ′ = (T − {R} − {S})∪{R∪S} and Q(T → T ′) =
exp

(

−
D2

σ2

)

NM +NS

c) Q(T ′ → T ) is obtained from the reverse case 3(c),

hence r = NM +NS

N′

M
+N ′

S
exp

(

D
2

σ2

)

, where N ′

M and N ′

s

are the number of merge and split moves possible from
T ′

3) Split move:
• if T contains only singleton sets, re-propose T ′ = T ,

hence r = 1
• otherwise select a non-singleton set U at random from T

and split it into two sets R and S.
a) T ′ = (T − {U}) ∪ {R, S}
b) Let D be the distance between the locations cor-

responding to R and S obtained by optimizing the
odometry wrt T ′

c) Q(T → T ′) = 1

NM +NS

d) Q(T ′ → T ) is obtained from the reverse case 2(b),

hence r = NM +NS

N′

M
+N ′

S
exp

(

−D
2

σ2

)

, where N ′

M and N ′

s

are as defined in 2(c)

The target distribution, in turn, is needed to compute the
acceptance ratio in the Metropolis-Hastings algorithm, as has
been mentioned before.

The appearance model presented above is not specific to
Fourier signatures. Indeed, it is a general purpose clustering
model that assumes that the data are distributed as a mixture
of Gaussians. A topology labels each data instance as arising
out of one of the mixture components, where the number of
mixture components is equal to the number of sets in the set
partition corresponding to the topology.

V. DATA-DRIVEN PROPOSAL DISTRIBUTION

Consider a topology T = {Sj |j ∈ [1,M ]}, where the Sj

are sets in a set partition of the measurements as before. If
the Markov chain is currently in the state T , the task of the
proposal distribution is to propose a new topology T ′ from T .
With reference to the calculation of the Metropolis-Hastings
acceptance ratio in (1), the probability of the step from T to
T ′ as well as the reverse step has to be computed. We now
present a data-driven proposal distribution that accomplishes
this task in an efficient manner so that the Markov chain mixes
rapidly across the state space.

The basic steps of the proposal consist of the merge and
the split moves as in [14]. A merge move occurs when two of
the sets in the set partition corresponding to T are merged to
yield T ′. Analogously, a split move occurs when a set in T is
split into two. The number of ways in which a merge move



Fig. 5. Odometry of the robot plotted with the laser measurements for the
first experiment.

can occur is given as NM =
(

M
2

)

, M > 1. To calculate the
number of possible ways a split move can occur, let NSt be
the number of non-singleton sets in the partition. Clearly, NSt

is the number of sets in the partition that can be split. Out of
these NSt sets, we pick a random set R to split. The number
of possible ways to split R into two subsets is given by

{

|R|
2

}

.
Here

{

n
m

}

denotes the Stirling number of the second kind that
gives the number of possible ways to split a set of size n into
m subsets [13]. Hence, the total number of ways a split move
can occur on T is given by NS = NSt

{

|R|
2

}

.
The data-driven proposal distribution, which computes the

proposal ratio r used in the calculation of the acceptance
ratio in (1), is given in Algorithm 2. The proposal begins by
picking a split or merge move according to the proportion of
the number of ways these moves are possible.

Subsequently, if a merge move is chosen, two random sets
from the partition are chosen to be merged. Now, however, the
knowledge of the odometry measurements is used to calculate
the probability of the proposal. Intuitively, measurements that
are taken when the robot pose is almost the same have a higher
probability of being from the same landmark, and should have
a higher probability of being merged.

The landmark locations corresponding to the sets to be
merged are obtained from the optimal robot trajectory, which
in turn is obtained by optimizing the odometry under the con-
straints required by topology T [14]. The topology T requires
certain landmark measurements to correspond to the same
physical landmark, i.e to occur at the same physical location.
However, enforcing this constraint causes the trajectory of the
robot to diverge from the odometry measurements. The opti-
mal trajectory minimizes the total error due to divergence from
the odometry measurements and not enforcing the constraints
dictated by the topology T . The probability of the merge step
is then obtained using the distance D between the landmarks
that we are proposing to merge as exp

(

−D2

σ2

)

, where σ2 is
a variance that encodes our belief in the distance between
landmarks, or equivalently, the scale of the environment.

The analogous calculation for the split step is now simple

Fig. 6. Schematic of robot path overlaid on a floorplan of the environment
for the first experiment.
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Fig. 7. Landmark locations obtained from simulated odometry for the second
experiment.

Data-driven
proposal

General proposal

1st experiment 9 minutes 46 minutes
2nd experiment 51 minutes > 6 hours

Fig. 8. Running times for computing the PTM using the two proposals in
both the experiments. The data-driven proposal speeds up the algorithm by at
least a factor of five.

since the probability of the split itself is just the inverse of total
possible moves from T . Note that the merge moves proposed
in the above scheme will often have a low probability since the
majority of landmarks chosen for merging will not be close
together. To prevent this, a gating scheme is used that selects
the landmarks to be merged preferentially based on their being
closer together than a pre-defined threshold.

VI. EXPERIMENTS

We now present experiments to validate our algorithm. The
experiments were performed on an ATRV-Mini robot mounted
with an eight camera rig and the landmarks in the runs were
selected manually.

The first experiment was conducted over an entire floor of
a building and consisted of a robot run containing two loops,
a bigger loop enclosing a smaller loop. Twelve landmarks
were observed by the robot during the run, shown overlaid
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Fig. 9. Topologies with highest posterior probability mass for the first experiment using only odometry. (a) receives 43% of the probability mass while (b),
(c), (d) and (e) receive 14%, 7.3%, 3.9% and 2.8% of the probability mass respectively. The ground truth topology is (c).
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Fig. 10. Topologies constituting the PTM for the first experiment using both odometry and appearance. (a) receives 99.5% of the probability mass while
(b), (c), (d) and (e) receive 0.25%, 0.14%, 0.12% and 0.01% of the probability mass respectively. The ground truth topology is (a).

on a floorplan of the experimental area in Figure 6. The
odometry of the robot with the laser plotted on top is shown in
Figure 5. Using only the odometry measurements, the ground
truth topology received a low probability mass due to noisy
odometry. The five most probable topologies in the PTM
obtained are given in Figure 9.

We now repeat the experiment, but this time also using the
appearance measurements in addition to the odometry. The
first five frequencies of the Fourier signatures were used for
this purpose. The values of the variance hyper-parameters in
the appearance model were set so that the prior over the
variance is centered at 500 with a variance of 50. When
appearance is also included, the results (shown in Figure 10)
shift dramatically since there is little perceptual aliasing in this
environment. Although five topologies appear in the PTM, the
ground truth topology receives almost all of the probability
mass. This experiment illustrates the fact that when reliable
measurements are available, our approach produces a PTM
that is sharply peaked in the space of topological maps. More
specifically, the appearance measurements help disambiguate
noisy odometry data in this case. The improvement in running
time using the data-driven proposal is given in Table 8.To
demonstrate the scalability of our algorithm, we conducted
a second experiment in simulation in an environment where

the robot was made to traverse a number of loops. A total
of 33 landmarks were observed by the robot in the run. The
landmark locations obtained from odometry generated during
the simulated run are shown in Figure 7. Using the data-driven
proposal speeds up the algorithm by a factor of six (Table 8)
as compared to the general split-merge proposal [14]. The four
most likely topologies in the PTM are shown in Figure 11.

In the above experiments, we test the convergence of the
MCMC procedure by initializing the chain randomly and
observing if the chains converge to the same distribution.
While this provides a rough estimate of convergence, it is
not a robust theoretical measure. Implementing a theoretically-
grounded convergence criterion is future work.

VII. CONCLUSION

We presented a generative model for appearance and used
it in addition to odometry to generate Probabilistic Topolog-
ical Maps. It is seen from the experiments that addition of
appearance information improves the results significantly by
disambiguating noisy odometry. This is in spite of the fact
that the appearance measurements are themselves noisy. In
addition, we presented a data-driven proposal that significantly
speeds up the algorithm by enabling rapid mixing of the
Markov chain. This speed-up is at least by a factor of five
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(d)
Fig. 11. Topologies with highest posterior probability mass for the second experiment. (a) the ground truth topology receives 71% of the probability mass
while (b), (c), and (d) receive 9.1%, 8.2%, and 6% of the probability mass respectively. The ground truth topology is (a).

as seen from the results we have presented.
It is to be noted that the improvement in the results upon

addition of appearance information is solely due to the fact
that we have a more confident inference of the PTM. The PTM
itself is simply the posterior over the space of topologies, and
hence, the PTM obtained using only odometry is not incorrect
in any sense. Addition of more information simply makes
the posterior more peaked in the space of topologies. This
improvement in the posterior upon use of more information is
a feature of Bayesian inference in general.

Currently, the appearance model requires three parameters
to be chosen by the user. These are the α and β variance
hyper-parameters and the number of frequency components to
be considered in the Fourier signature. The variance hyper-
priors encode the variation in appearance values from the
same location in the environment. Changes in lighting, camera
distortion and other measurement noise may make this vari-
ation large. Hence, the values of the hyper-parameters need
to be empirically determined for each environment. It is our
experience that there is rarely need to use more than the
first five frequency components in the appearance model. This
is because the higher frequency components mainly contain
noise, which we do not seek to model. It is also to be noted
that while we use Fourier signatures in this work, any other
rotation-invariant dimensionality reduction technique can be
used instead.

While we only use models for odometry and appearance,
a simple extension to laser data is also possible. 3600 laser
scans at the landmark locations can be used to compute the
likelihood between scans after an optimal alignment. This
likelihood, extended to multiple scan comparison, can be used
to sample over partitions. Similarly, we have only considered
the use of odometry measurements in the data-driven pro-
posal. Clearly, appearance information can also be used in
a similar manner in conjunction to odometry. However, it is
our experience that the use of odometry alone is sufficient to
provide good proposals and hence, in the interests of space, we
have not provided details of the analogous use of appearance
measurements here.
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