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Abstract— While probabilistic techniqueshave previously been
investigated extensively for performing inferenceover the space
of metric maps, no correspondinggeneral pur posemethodsexist
for topological maps. We present the concept of Probabilistic
Topological Maps (PTMs), a sample-basedrepresentation that
approximates the posterior distrib ution over topologies given
available sensor measuements We showv that the space of
topologies is equivalent to the intractably large space of set
partitions on the set of available measuements. The combi-
natorial nature of the problem is overcome by computing an
approximate, sample-basedrepresentationof the posterior. The
PTM is obtained by performing Bayesianinferenceover the space
of all possible topologiesand provides a systematic solution to
the problem of perceptual aliasing in the domain of topological
mapping. In this paper, we describe a general framework for
modeling measuements,and the use of a Mark ov chain Monte
Carlo (MCMC) algorithm that usesspecic instancesof these
modelsfor odometry and appearancemeasuiementsto estimate
the posterior distrib ution. We presentexperimental results that
validate our technique and generate good maps when using
odometry and appearance,derived from panoramic images, as
sensormeasuements.

I. INTRODUCTION

Mapping an unknavn and uninstrumentedervironmentis
one of the foremost problems in robotics. For this pur
pose, both metric maps [12][38][37] and topological maps
[44][5][32][26] have beenexplored in depth as viable rep-
resentationof the ervironment. In both cases,probabilistic
approachebave hadgreatsuccessn dealingwith theinherent
uncertaintiesassociatedvith robot sensori-motoicontrol and
perception,that would otherwisemake map-hiilding a very
brittle processLately, the vastmajority of probabilisticsolu-
tionsto the mappingproblemalsosolve the localizationprob-
lem simultaneouslysince thesetwo problemsare intimately
connectedA solution to this Simultaneoud_ocalizationand
Mapping (SLAM) problemdemandghat the algorithm main-
tains beliefs over the poseof the robot as well asthe map
of the ervironment.The poseand the map are then updated,
eitherrecursvely, assuminghe belief aboutthe otherquantity
to be x ed[37], or simultaneously{53].

The majority of the work in robot mapping deals with
the construction of metric maps. Metric maps provide a
ne-grained representatiorof the actual geometricstructure
of the ervironment. This makes navigation easy but also
introducessigni cant problemsduring their constructionDue
to systematicerrorsin odometry the maptendsto accumulate
errorsover time, which makes global consisteng dif cult to
achieve in large ervironments.

Topological representationspn the other hand, offer a
differentset of advantageghat are usefulin mary scenarios.
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The camerarig mountedon the robot usedto obtain panoramic

Topologicalmapsattemptto capturespatialconnectvity of the
ervironmentby representingt asa graphwith arcsconnecting
the nodesthat designatesigni cant placesin the ervironment,
suchas corridor junctionsand room entranceg28]. The arcs
are usually annotatedwvith navigation information.

Arguably the hardestproblem in robotic mappingis the
perceptuakliasing problem,which is an instanceof the data
associationproblem, also variously known as “closing the
loop” [18] or “the revisiting problem” [50]. It is the problem
of determiningwhethersensomeasurementskenat different
pointsin time correspondo the samephysicallocation.When
arobotrecevesa new measurementf hasto decidewhether
to assigrthis measuremertb oneof thelocationsit hasvisited
previously, or to a completely new location. The aliasing
problemis hardasthe numberof possiblechoicesgrows com-
binatorially. Indeed,we demonstratédelow thatthe numberof
choicesis the sameas the numberof possiblepartitions of
a set, which grows hyperexponentially with the cardinality
of the set. Previous solutionsto the aliasingproblem[53][25]
commit to a speci ¢ correspondencbetweenmeasurements
and locations at each step, so that once a wrong decision
hasbeenmade,the algorithm cannotrecover. Othersolutions
[27][10][26] performwell in most situationsbut fail silently
in ervironmentswherethe problemis particularly hard, thus
returninga wrong map of the ervironment.

The major contribution of this work is the idea of de ning
a probability distribution over the spaceof topologicalmaps



Fig. 2. A panoramicmageobtainedfrom the robot camerarig

and the use of samplingin order to obtain this distribution.
The key realizationhereis that a distribution over this com-
binatorially large spacecan be succinctly approximatedby
a sampleset drawn from the distribution. In this paper we
describeProbabilistic Topological Maps (PTMs), a sample-
basedrepresentatiorthat capturesthe posterior distribution
over all possibletopologicalmapsgiven the available sensor
measurements.

The intuitive reasonfor computingthe posterioris to solve
the aliasing problem for topologiesin a systematicmanner
Thesetof all possiblecorrespondencdsetweermeasurements
and the physicallocationsfrom which the measurementare
takenis exactly the setof all possibletopologies By inferring
the posterioron this set,wherebyeachtopologyis assigned
probability, it is possibleto locatethe more probabletopolo-
gies without committing to a speci ¢ correspondencat ary
point in time, thus providing the mostgeneralsolutionto the
aliasing problem.Even in pathologicalernvironments,where
almost all current algorithms fail, our technique provides
a quanti cation of uncertaintyby pegging a probability of
correctnesgo eachtopology While sample-baseéstimation
of the posteriorover data associationshas previously been
discussedn computervision [6], its usein robotic mapping
to nd adistribution overall possiblemapsis completelynovel
to the bestof our knowledge.

As a secondmajor contribution, we shav how to perform
inferencein the spaceof topologieggivenuncertainrsensodata
from the robot. We provide a generaltheory for incorporat-
ing odometryand appearanceneasurements the inference
processMore speci cally, we describean algorithmthatuses
Markov chainMonte Carlo (MCMC) sampling[14] to extend
the highly successfuBayesianprobabilisticframework to the
spaceof topologies.To enablesamplingover topologiesusing
MCMC, eachtopology is encodedas a set partition over
the setof landmarkmeasurementdie then sampleover the
spaceof setpartitions,usingastargetdistribution the posterior
probability of the topology given the measurements.

Anotherimportantaspectof this work is the de nition of
a simple but effective prior on the density of landmarksin
the environment. We demonstratethat given this prior, the
additionalsensoiinformationneededtanbevery scantindeed.
In fact, our methodis generaland candeal with ary type of
sensomeasuremertr prior knowledge.Moreover, ary newly
availableinformationfrom the sensorsanbe usedto augment
the previous available information to improve the quality of
the PTM. In our experiments,we shav that even when the
systemproduceshice maps of the ernvironment using only
odometry measurementsye can get better quality mapshby
using appearanceéatain additionto the odometry

We provide a general-purpos@appearancenodel in this
work and illustrate its application using Fourier signatures
[21][33] of panoramicimages. The panoramicimages are
obtainedfrom a camerarig mountedon a robot as shavn
in Figurel. An exampleof sucha panoramidmageis shavn
in Figure 2. Fourier signatureswhich have previously been
usedin the context of memory-basechavigation [33] and
localization using omni-directional vision [34], are a low-
dimensionalrepresentatiorof images using Fourier coef-
cients. They allow easy matching of imagesto determine
correspondenced-urther due to the periodicity of panoramic
images Fouriersignaturesrerotation-invariant. This property
is of prime importance when determining correspondence
since the robot may be moving in different directionswhen
the imagesare obtained.

In subsequensections,we provide relatedwork in proba-
bilistic mappingin generalandtopologicalmappingin partic-
ular. Then,we de ne ProbabilisticTopologicalMapsformally
andprovide atheoryfor estimatinghe posterioroverthe space
of topologies.Subsequentlywe describean implementation
of the theory using MCMC samplingin topological space,
followed by a sectionwith detailsaboutthe speci ¢ odometry
and appearancenodelswe used.A prior over the spaceof
topologiess alsodescribedFinally, in SectionVIl we provide
experimentalvalidationfor our technique.

Il. RELATED WORK

Our work relatesto the areaof probabilisticmappingand,
more speci cally, to topological mapping.Below we review
relevant prior researchn theseareas.

A. Probabilistic Mappingand SLAM

Early approache$o the mappingproblem(usuallyobtained
by solving the SLAM problem)usedKalman lters and Ex-
tendedKalman Iters [29][4][7][11][49][48] onlandmarksand
robot pose.Kalman Iter approachesssumethat the motion
model, the perceptualmodel (or the measuremenmodel)
andthe initial statedistribution are all Gaussiardistributions.
ExtendedKalman lters relaxtheseassumptionsy linearizing
the motion model using a Taylor series expansion.Under
theseassumptionsthe Kalman Iter approachcan estimate
the complete posterior over maps ef ciently. However, the
Gaussianassumptionsmean that it cannot maintain multi-
modaldistributionsinducedby the measuremerdf alandmark
that looks similar to anotherlandmarkin the environment.In
otherwords,the Kalman Iter approachs unableto copewith
the correspondencproblem.

A well-known algorithm that incorporatessmoothing,in-
steadof Kalman ltering, is the Lu/Milios algorithm [31],



a laserspeci c algorithm that performsmaximumlik elihood
estimation of the correspondencelt iterates over a map
estimatioranda dataassociatiorphasehatenabldt to recover
from wrong correspondenceis the presenceof small errors.
However, the algorithm encounterslimitations when faced
with large poseerrorsandfails in large ervironments.

Rao-BlackwellizedParticle Filters (RBPFs)[39], of which
the FastSLAM algorithm [37] is a speci ¢ implementation,
are also theoretically capable of maintaining the complete
posteriordistribution over mapsunderassumptiorof Gaussian
measurementsThis is possible since each samplein the
RBPFcanrepresent differentdataassociatiordecision[36].
However, in practicethe dimensionalityof the trajectoryspace
is too large to be adequatelyrepresentedn this approach,
and often the ground-truthtrajectory along with the correct
dataassociatiorwill be missedaltogether This problemis a
fundamentakhortcomingof the importancesamplingscheme
usedin the RBPFE and cannotbe dealt with satishctorily
exceptby an exponentialincreasein the numberof samples,
which is intractable. One solution to this problem, which
involves keepingall possibledataassociationsn a tree and
searchingthroughthem at eachtime step,is given in [19].
Anotherproblemwith RBPFsis their sensitvity to odometry
drift over time. Recentwork by Haehnelet al. [18] tries to
overcomethe odometrydrift by correctingfor it throughscan
matching,but this only alleviatesthe problemwithout solving
it completely

Yet anotherapproachto SLAM that has beensuccessful
is the use of the EM algorithmto solve the correspondence
problemin mapping[53][3]. The algorithm iteratesbetween
nding the mostlikely robot poseand the most likely map.
EM-basedalgorithmsdo not computethe completeposterior
over maps,but insteadperformhill-climbing to nd the most
likely map.Suchalgorithmsmake multiple passe®ver sensor
datawhich makesthem extremely slowv andunt for on-line,
incrementalcomputation.In addition, EM cannotovercome
local minima, resultingin incorrect data associationsOther
approachesxist thatreportloop closuresandre-distribute the
error over the trajectory[17][40][52][50], but thesedecisions
areagainirrevocableand hencemistales cannotbe corrected.

Recentwork by Duckett [8] on the SLAM problem is
similar to our own, in the sensethat he too dealswith the
spaceof possiblemaps.The SLAM problemis presentedas
a global optimization problem and metric maps are coded
as chromosomedor usein a geneticalgorithm. The genetic
algorithm searche®ver the spaceof maps(or chromosomes)
and nds the mostlikely map usinga tness function. This
approachdiffers from ours by computingthe maximumlik e-
lihood solution as opposedto the completeposterioras we
do. In consequencsdt suffers from brittlenesssimilar to other
techniquegdescribedpreviously.

B. Topolagical Maps

Maintaining the posterior distribution over the space of
topologies results in a systematicand robust solution to
the aliasing problem that plaguesrobot mapping. Though
probabilistic methodshave been usedin conjunction with

topologicalmapsbefore,noneexist thatarecapableof dealing
with the inferenceof the posteriordistribution over the space
of topologies.A recentapproachgives an algorithmto build
a tree of all possibletopological mapsthat conform to the
measurementshut in a non-probabilisticmanner [45][44].
Dudek.et. al. [9] have also given a techniquethat maintains
multiple hypothesesegardingthe topologicalstructureof the
ervironmentin the form of anexplorationtree.Most instances
of previous work extant in the literature that incorporate
uncertaintyin topologicalmaprepresentationdo not dealwith
generalopologicalmaps,but with the useof markov decision
processeso learna policy that the robot follows to navigate
the ervironment.

Simmonsand Koenig [47] model the environment using
a POMDP in which obsenations are usedto updatebelief
states.Another approachthat is closerto the one presented
here, in the senseof maintaininga multi-hypothesisspace
over correspondencess givenby Tomatiset al. [56] andalso
usesPOMDPsto solve the correspondencproblem.However,
while in their casea multi-hypothesisspaceis maintained,it
is usedonly to detectthe points wherethe probability mass
splits into two. Also, like a lot of others, this work uses
speci ¢ qualitiesof the indoor ervironmentsuchasdoorsand
corridorjunctions,andhences not generallyapplicableto any
ervironment.ShatkayandKaelbling [46] usethe Baum-Welch
algorithm,a variantof the EM algorithmusedin the context of
HMMs, to solve the aliasingproblemfor topologicalmapping.
Otherexamplesof HMM-basedwork include[24][16] and[2]
wherea secondrderHMM is usedto modelthe environment.

Lisien et al. [30] have provided a methodthat combines
locally estimatedeature-basedhapswith a globaltopological
map.Dataassociatiorfor the local mapsis performedusinga
simple heuristicwhereineachmeasuremeris associatedvith
the existing landmark having the minimum distanceto the
measuredocation.A new landmarkis createdf this distance
is above a threshold.The setof local mapsis then combined
usingan “edge-map”associationi.e. the individual landmarks
are aligned and the edgescompared.This technique,while
suitablefor mappingernvironmentswherethe landmarkloca-
tions are sufciently dissimilat is not robustin ervironments
with large or multiple loops.

Many topological approacheg¢o mapping, relatedto our
work only in the sensethat they form a signi cant part of
the topological mapping literature, include robot control to
help solve the correspondenceroblem. This is achieved by
maneueringtherobotto the exactspotit wasin whenvisiting
thelocationpreviously, sothatcorrespondencleecomesasier
to compute. Examples of this approachinclude Chosets
Generalized/oronoi Graphs[5] and Kuipers' SpatialSeman-
tic Hierarchy [28]. Other approacheghat involve behaior-
basedcontrol for exploration-basedopological mappingare
also fairly common. Mataric [32] usesboundary-follaving
and goal-directednavigation behaiors in combinationwith
gualitatve landmarkidenti cation to nd a topological map
of the environment.A completebehaior-basedearningsys-
tem basedon the Spatial SemanticHierarchy that learns at
mary levels starting from low-level sensori-motorcontrol to
topological and metric mapsis describedin [42]. Yamauchi



et al. [57][58] use a reactve controller in conjunctionwith
an Adaptive PlaceNetwork that detectsand identi es special
placesin the ervironment. Theselocationsare subsequently
placedin a network denotingspatialadjaceny.

Some other approacheause a non-probabilisticapproach
to the correspondencgroblem by applying a clustering al-
gorithm to the measurement$o identify distinctive places,
an instancebeing [27]. Finally, SLAM algorithms usedto
generatemetric maps have also beenappliedto generating
integrated metric and topological maps with some success.
For instance,Thrun et al. [54] usethe EM algorithmto solve
the correspondencproblemwhile building a topologicalmap.
The computedcorrespondencés subsequentlyusedin con-
structinga metric map.By contrast,Thrun[51] rst computes
a metric map using valueiteration and usesthresholdingand
Voronoi diagramsto extract the topology from this map.

A Probabilistic Topological Map is a sample-basedepre-
sentationthat approximateghe posteriordistribution P(TjZ)
over topologiesT given obsenationsZ. While the spaceof
possiblemapsis combinatoriala probability densityover this
spacecan be approximatecby drawing a sampleof possible
mapsfrom the distribution. Using the samplesit is possible
to constructa histogramon the supportof this sampleset.

We do not considerthe issue of landmark detectionin
this work. Instead,we assumehe availability of a “landmark
detector'thatsimply detectsalandmarkwhentherobotis near
(or on) a landmark.Subsequentlyodometryand appearance
measurementgrom the landmark location are stored, the
appearanceneasurementbeingin the form of images.The
odometrycanbe saidto measurehe landmarklocationwhile
the imagesmeasurehe landmarkappearanceNo knowledge
of the correspondencéetweenlandmarkmeasurementand
the actual landmarksis given to the robot: indeed, that is
exactly the topology that we seek.The problemthenis to
computethediscreteposteriorprobability distribution P (TjZ)
over the spaceof topologies.

Our techniqueexploits the equivalencebetweentopologies
of an ervironmentand set partitions of landmark measure-
mentswhich groupthe measuremeniato a setof equivalence
classesWhenall the measurementsf the samelandmarkare
groupedtogetherthis naturallyde nes a partitionon the setof
measurementdt canbe seerthatatopologyis nothingbut the
assignmenbf measurement setsin the partition, resulting
in the above mentionedisomorphismbetweentopologiesand
set partitions. An example of the encodingof topologiesas
setpartitionsis shavn in Figure 3.

We begin our considerationby assumingthat the robot
obsenesN “specialplaces”or landmarksduringarun, not all
of themnecessaridistinct. The numberof distinctlandmarks
in the ervironment, which is unknown, is denotedby M.
Formally, for the N elementmeasuremensetZ = fZ;jl
i Ng, apartitionT canbe representedsT = fS; jj 2
[1;M]g, whereeachS; is a set of measgrementsuch that
S\ S2= g Lj22[;M]j16j2 L § = Z, and
M N is the numberof setsin the partition. In the context

PROBABILISTIC TOPOLOGICAL MAPS
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Fig. 3. Two topologieswith 6 obserations each correspondingto set
partitions (a) with six landmarks (f Og; f 1g; f 2g; f 3g; f 4g; f 5g) and (b)
with ®ve landmarkséf Og; f 1; 5g; f 2g; f 3g; f 4g) wherethe secondand sixth
measuremendre from the samelandmark.

of topologicalmapping,all membersof the setS; represent
landmarkobsenationsof thej th landmark.The cardinality of
the set of all possibletopologiesis identical to the number
of set partitions of the obsenation N -set. This Bumbeers
calledtheBell numberby [41], de ned asby = E k=0 kk| ,
and grows hyperexponentiallywith N, for exampleb, = 2,
b; = 5 but b5 =1382958545 The combinatorialnature of
this spacemakes exhaustie evaluationimpossiblefor all but
trivial ervironments.

IV. A GENERAL FRAMEWORK FOR INFERRING PTMs

The aim of inferencein the spaceof topologiesis to obtain
the posterior probability distribution on topologiesP(TjZ).
All inferenceprocedureshat computesample-basetepresen-
tationsof distributions requirethat evaluationof the sampled
distribution bepossibleln this sectionwe describehegeneral
theoryfor evaluatingthe posteriorat any given topology

Using BayesLaw on the posteriorP (TjZ), we obtain

P(Tjz) 1 P(ZJT)P(T) 1)

where P(T) is a prior on topologiesand P(ZjT) is the
obsenation likelihood.

In this work, we assumethat the only obsenations we
possessare odometry and appearanceNote that this is not
a limitation of the framework, and other sensormeasure-
ments, such as laser range scans,can easily be taken into
considerationWe factorthe setZ asZ = fO;Ag , where
O and A correspondo the set of odometryand appearance
measurementeespectiely. This allows us to rewrite (1) as

P(TjO;A) kP(O; AJT)P(T)
kP(OJT)P(AJT)P(T)

()

wherek is the normalizationconstantand we have assumed
that the appearanceand odometry are conditionally inde-
pendentgiven the topology We discussevaluation of the
appearancékelihoodP (AjT), odometrylikelihood P (OjT),
andthe prior on topologiesP (T), in the following sections.

A. Evaluatingthe OdometryLikelihood

It is not possible to evaluate the odometry likelihood
P (QjT) without knowledgeof the landmarklocations.How-
ever, sincewe aredo not requirethe landmarklocationswhen



Fig. 4. TheBayesiametwork (b) thatencodegheindependencassumptions
for the appearanceneasurements the topology (a) given the true appear
anceY = fyi;:::;ysg at all the landmarklocations. The measurements
correspondingdo differentlandmarksare independent.

inferring topologies,we integrate over the set of landmark
locationsX and caIcuIatZethe mauginal distribution P (OjT):

®3)

where P(OjX; T) is the measurementnodel, a probability
densityon O givenX andT, andP (X jT) is aprior overland-
mark locations.Note that (3) makesno assumptionsboutthe
actualform of X , andhencejs completelygeneral Evaluation
of the odometrylik elihood using(3) requiresthe speci cation
of a prior distribution P (X jT) over landmarklocationsin the
ervironment and a measurementnodel P(OjX;T) for the
odometrygiven the landmarklocations.

P(QT) = § P(OjX; T)P(X]T)

B. Evaluatingthe AppeaancelLikelihood

Similar to the caseof the odometrylikelihood, estimation
of the appearancdikelihood P (A j T), whereA = fajl
i Ngis the setof appearanceneasurementss performed
by introducing the hidden parameterY fy;jl j
M g. This hidden parameterdenotesthe “true appeaance
correspondindgo eachlandmarkin thetopology As we do not
needto computeY wheninferring topologieswe maiginalize
over it sothat 7

PAIT)= YP(AJ'Y;T)P(YJT)

(4)

whereP (AjY; T) is the measurementodelandP (Y j T) is
the prior on the appearanceélWe assumethat the appearance
of a landmarkis independenbf all otherlandmarks,so that
eachy; is independendf all otheryjo. The prior P(Y j T)
canthusbe factoredinto a productof priors on the individual

Yi-

PViT)=  P(y)
j=1
Thetopology T introducesa partition on the setof appear
ancemeasurementby determiningwhich “true appearance”
y; eachmeasuremeng; actually measuresj.e the partition
encodesthe correspondencdetweenthe set A and the set
Y. Also, given Y, the likelihood of the appearancecan

®)

be factoredinto a product of likelihoods of the individual
appearanceanstances.This is illustrated using an example
topologyin Figure4, wherethe Bayesiametwork encodeghe
independencassumptionsn the appearanceneasurements.
Hence,denotingthe j th setin the partition as S;, we rewrite
P(AjY;T) as-

PAjY;T)=
i=1 a2s;

Paijy) (6)
where the dependenceon T is subsumedin the partition.
Combining Equations(4), (5) and (6), we get the expression
for the appearancéik elihood as
. w Z Y .
P(AjT) = P(y;) Paijy)
j=1 i ai2s;

()

In the above equation P (y; ) is a prior on appearance the
ervironment,and P (a; j y;) is the appearanceneasurement
model. Evaluation of the appearancdik elihood requiresthe
speci cation of thesetwo quantities.

C. Prior on Topologies

The prior on topologiesP(T), requiredto evaluate (2),
assignsa probability to topology T basedon the numberof
distinctlandmarksn T andthetotal numberof measurements.
The prior is obtainedthrough the use of the ClassicalOc-
cupang Distribution [22]. In the interestof continuity, the
derivation of the prior is deferredto AppendixA. We simply
statethe expressionfor the prior, given the total number of
landmarksin the ernvironmentL (including thosenot visited
by the robot)

LN L!
(L ™M) ®)

whereN is the numberof measurement$/ is the numberof

distinctlandmarksn thetopology T, andk is a normalization
constantThis prior distribution assignequalprobability to all

topologiescontainingthe samenumberof landmarks.

Note thatthe total numberof landmarksn the ervironment,
L, is not known. Hence,we assumea Poissonprior on L,
giving P(Lj ) = LLL, and mamginalize over L to get the
actualprior on topologiesx

P(T)

P(TjL) = k

P(TIL)P(L] )
L
s L N L

e L M)

)

L=M
where is the Poissonparameteandthe summatiorreplaces
the integral asthe Poissondistribution is discrete In practice,
the prior on L is a truncatedPoissondistribution since the

summatiorin (9) is only evaluatedor a nite numberof terms.

V. INFERRING PROBABILISTIC TOPOLOGICAL MAPS
USING MCMC

The previous sectionprovided a generaltheoryfor inferring
the posteriorover topologiesusing odometryand appearance
information.We now present concretemplementatiorof the



Fig. 5. An exampleof a PTM giving the most probabletopologiesin the posteriordistribution obtainedusing MCMC sampling.The histogramgives the

probability of eachtopology

Algorithm 1 The Metropolis-Hastingslgorithm

1) Startwith avalid initial topologyT:; theniterateoncefor each
desiredsample .

2) Proposea new topology T; using the proposal distribution
Q(Tt(); Tt)

3) Calculatethe acceptanceatio
- P(TZ"Y) Q(T; T
P(Tijz') Q(TS Th)

where Z'is the set of measurementobsered up to and
including time t.

4) With probability p = min(1; a), acceptT® andsetT, T
If rejectedwe keepthe stateunchangedi.e. returnT; asa
sample).

(10

theorythatusesthe Metropolis-Hastingslgorithm[20], avery
generalMCMC method,for performingthe inference.Figure
5 depictsan exampleof the discreteposteriorover topologies
obtainedusingour MCMC-basedechniqueAll MCMC meth-
odswork by runninga Markov chainover the statespacewith
the propertythat the chain ultimately corvergesto the target
distribution of our interest. Once the chain has corverged,
subsequenstatesvisited by the chain are consideredto be
sampledrom thetargetdistribution. The Markov chainitself is
generatedisinga proposaldistribution thatis usedto propose
the next statein the chain, a move in state space,possibly
by conditioningon the currentstate.The Metropolis-Hastings
algorithmprovidesa techniquewherebythe Markov chaincan
convergeto thetargetdistribution usingary arbitraryproposal
distribution, the only importantrestrictionbeingthatthe chain
be capableof reachingall the statesin the statespace.

The pseudo-codeéo generatea sequenceof samplesfrom
the posterior distribution P(TjZ) over topologiesT using
the Metropolis-Hastingsalgorithm is shavn in Algorithm 1
(adaptedrom [14]). In this casethe statespacds the spaceof
all setpartitions,whereeachsetpartitionrepresenta different
topologyof the environment.Intuitively, thealgorithmsamples
from the desiredprobability distribution P (TjZ) by rejecting
a fraction of the moves generatedy a proposaldistribution
Q(T2 Ty), whereT, is the currentstateand T is the proposed
state. The fraction of moves rejectedis governed by the
acceptanceaatio a given by (10), which is where most of
the computationtakes place. Computingthe acceptanceatio,
and hence,samplingusing MCMC, requiresthe designof a
proposadensityandevaluationof thetargetdensity thedetails
of which are discussedelow.

(CX{03.413.423.13}.44))

(b)10.33,{1.,4}.42})
Fig. 6. lllustration of the proposal- Given a topology (a) correspondingo

the set partition with N =5, M =4, the proposaldistribution can (b) perform
a memge step to proposea topology with a smaller number of landmarks
correspondingo a setpartition with N =5, M =3 or (c) perform a split step
to proposea topology with a greaternumberof landmarkscorrespondingo

a setpartition with N =M =5 or re-proposethe sametopology

(a){0}.{1.4}.{2}.(3})

We use a simple split-mege proposal distribution that
operateshy proposingone of two moves, a split or a memge
with equal probability at each step. Given that the current
sampletopology hasM distinct landmarks,the next sample
is obtainedby splitting a set,to obtaina topologywith M + 1
landmarks,or memging two sets,to obtain a topology with
M 1 landmarks.The proposalis illustratedin Figure 6 for
a trivial ervironment.If the chosenmove is not possible the
currenttopologyis re-proposedAn exampleof animpossible
move is a merlge move on a topology containingonly one
landmark.

The meige move memgestwo randomlyselectedsetsin the
partition to producea new partition with one less set than
before. The probability of a merge is simply 1=N\y where
Ny is the numberof possiblememes and is equal to the
binomial coefcient ", (M > 1).

The split move splitsa randomlyselectedsetin the partition
to producea new partition with one more set than before.
To calculatethe probability of a split move, let Ns be the
numberof non-singletonsetsin the partition. Clearly, Ns is
the numberof setsin the partition that can be split. Out of
theseNs sets,we pick a randomsetR to split. The number
of possiblewaysto split R into two subsetss given by “;‘ ,
where r?q denotesthe Stirling numberof the secondkind
that givesthe numberof possiblewaysto split a setof sizen

into m subsetsandis de nedrecursvelyas ! = " 1 +
n 1

[41]. Combiningthe probability of selectingR and
the probability of splitting it, we ok:l)tainthe probability of the
split move aspspit = Ns /8!

The proposal distribution is summarizedin pseudo-code
format in Algorithm 2, where Q is the proposaldistribution
andr = qgfi'TTo; is the proposaratio, a partof theacceptance
ratio in Algorithm 1. Note thatthis proposaldoesnotincorpo-



Algorithm 2 The ProposalDistribution
1) Selecta meige or a split with probability 0:5
2) Merge move:
if T containsonly one set, re-proposeT® = T, hence
r=1
otherwiseselecttwo setsat random,sayR andS
a) Tf: (T fRg fSg)[ fR[ SgandQ(T !

T9 =

N

b) Qh(llT0 I T) is obtainedfrom th(le reversecase3(b),
hencer = Ny Ns 'R,
numberof possiblesplitsin T°

, whereNs is the

3) Split move:
if T containsonly singletonsets, re-proposeT® = T,
hencer = 1

otherwiseselecta non-singletorsetU at randomfrom T
andsplit it into two setsR andS.

a) T® = (T fUg) [ fR;SgandQ(T ! T9Y =
N VI
2
b) Q(T°! T) is obtainedfrom the reversecase2(b),

hencer = N, 'Ns 19 |

of possmlemetgesm TO

whereNy is the number

rate ary domainknowledge,but usesonly the combinatorial
propertiesof setpartitionsto proposerandommaoves.

In addition to proposing new moves in the space of
topologies,we alsoneedto evaluatethe posteriorprobability
P(Tjz). Thisis doneasdescribedn SectionlV. The speci -
cationof themeasuremenhodelsandthe detailsof evaluating
the posteriorprobability using thesemodelsare given in the
following section.

VI.

We evaluate the posterior distribution, which is also the
MCMC target distribution, using the factoredBayesrule (2).
It is importantto note that we do not needto calculatethe
normalizationconstantin (2) since the Metropolis-Hastings
algorithm requires only a ratio of the target distribution
evaluatedat two points, wherein the normalizationconstant
cancelsout. The odometryandappearanceneasuremernnod-
els requiredto evaluate(2) are describedbelow.

EVALUATING THE POSTERIOR DISTRIBUTION

A. Evaluatingthe OdometryLikelihood

Evaluation of the odometrylikelihood is performedusing
3) z
P(OjT)=  P(OIX;T)P(X]|T)
X

under the assumption,common in robotics literature, that
landmarklocationsand odometrymeasurementiave the 2D
form X = fl; = (Xi;vi)jl i NgandO = fog =

(Xk:Yx; k)1 k N 19 respectiely. This requires
the de nition of a prior on the distribution of the landmark
locationsX conditionedon the topology T, P(X|T).

We use a simple prior on landmarksthat encodesour
assumptiorthat landmarksdo not exist closetogetherin the
ervironment.If the topology T placestwo distinct landmarks
li1 andl;j> within a distanced of eachother, the negative log
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Fig. 7. Cubic penaltyfunction (in this case,with a thresholddistanceof 3
meters)usedin the prior over landmarkdensity

®
(@

Fig. 8. lllustration of optimizationof the odometrylikelihood. The obsered
odometryin (a) is transformedo the onein (b) becausehe topologyusedin
this case,(f 0; 4g; f 1g; f 2g; f 3g) , tries to placethe ®rst and last landmarks
at the samephysicallocation.

(®)

likelihoodcorrespondindo the two landmarkds givenby the
penaltyfunction
f(d d< D
LTy = L) = &0 95 P
whered is the Euclideandistancebetweenl;; andli;, D is
a thresholdvalue, called the “penalty radius”, and we de ne
f (d) to be a cubic function asshavn in Figure 7. The cubic
functionis de ned usingtwo parameters thepenaltyradiusD
at which the function becomesero, andthe maximumvalue
of the function at the origin. The total probability P (X jT) of
landmarklocationsX giventopologyT is thencalculatedas
X
logP (X T) = L(li;hi2)  (12)
1 il<i2 N
lir 2 S(li2)

whereS(lj2) denoteshe setcontainingl;,.
TheodometrylikelihoodfunctionP (OjX; T) in (3) encodes
the deviation betweenthe measureddometryand the odom-
etry predictedby the topology and the landmark locations.
Intuitively, the topology T constrainssomemeasurementas
being from the samelocation even thoughthe odometrymay
put theselocationsfar apart. The likelihoodfunction accounts



for the two typesof errors:thosefrom distortingthe odometry
andthosefrom not conformingto the topology T. Hence,the
log-likelihoodfor the odometrycan be written as

kX Xok 2 X

(0]

X I I
+ il i2

logP(OjX;T) =
T

(13)

S2Til;i22S

whereS is asetin thepartitioncorrespondingo T, o and t
are standarddeviations explainedbelow, and X ,, is the set of

landmarkiocationsobtainedrom the odometrymeasurements.

The rst term on the right hand side of (13) corresponds
to the error from the odometry distortion while the second
term correspondgo the topology constraints.The standard
deviationsfor the odometryandtopology constraints, o and

T respectrely, encodehe amountof errorthatwe arewilling
to toleratein eachof thesequantities.

A simple example illustrating the constraintsis given in
Figure 8. In this example, the topology constrainsX , and
X4 (the rst andlastlandmarks)to the samelocationcausing
a distortion in the odometry This resultsin the topology in
Figure 8(b).

1) Numerical Evaluation of the Odometry Likelihood:
In some cases,it may be possibleto evaluatethe integral
in (3) analytically using the functional form of the log-
likelihood given in (13) and (12). If closedform evaluation
is not possible,it may still be possibleto use an analytical
approximationtechniquesuch as Laplaces method [55] to
evaluate(3).

However, in general,it is not possibleto useary form of
analytical evaluation to compute(3). Instead,we employ a
Monte Carlo approximation,using importancesampling[13]
to approximatehe integrandP (OjX ; T)P (X |T). Importance
samplingworks by generatingsamplesfrom a proposaldis-
tribution that is easyto samplefrom. Each sampleis then
weightedby the ratio of the target distribution to the proposal
distribution evaluatedat the samplelocation. The Monte Carlo
approximationis subsequentlyperformed by summing the
weighted samples.The primary condition on the proposal
distribution is thatit shouldbe non-zeroat all locationswhere
the tamget distribution is non-zero.In addition, importance
samplingis efcient if the proposaldistribution is a close
approximationto the target distribution.

In our case,the importance sampling proposal distribu-
tion is obtainedfrom the odometrylog-likelihood (13). This
function is a lower bound on the log of the integrand,
log(P(OjX; T)P(X]jT)), sincethe prior term given by (12)
is never negative. Consequently(13) canbe usedto obtaina
valid importancesamplingdistribution. We employ Laplaces
methodto obtain a multivariate Gaussiandistribution from

logP (OjX; T), which is usedas the proposaldistribution.
This is achieved by computingthe maximumlik elihood path
X ? through a non-linear optimization of  logP (OjX; T),
and creating a local Gaussianapproximation Q(X jO;T)
aroundX ?

X? = agmax ( logP(OjX:T))
X

e s(X xNHT  HX X7)

QX jO;T) = p%
where is the covariancematrix relating to the curvature of

) (X)) aroundX . The distribution Q(X jO; T) is then used
asthe proposaldistribution for the importancesampler

In practice,we usethe Levenbeg-Marquard algorithmin
conjunctionwith a sparseQR solver to performthe optimiza-
tion describedabose. The Levenbeg-Marquard algorithm
requiresthe derivative of the objective function that is being
minimized,in this casethe function logP (OjX;T) in (13).
To computethe (sparseYacobiarH givenby H = %, we
use an automaticdifferentiation(AD) framework. Automatic
differentiation(AD) is a techniquefor augmentingcomputer
programswith derivative computationslt exploits thefactthat
by applying the chainrule of differential calculusrepeatedly
to elementaryoperationsgderivativesof arbitraryordercanbe
computedautomaticallyand accuratelyto working precision.
See[15] for more details.

Theodometrylikelihoodgivenby (3) is now evaluatedusing
the Monte Carlo approximation

z LN
POX:TP(X|T)
X

N i=1

P(OjX O; T)P (X WjT)
QX Mjo;T)

‘ (14)
where the X () are samplesobtained from the Gaussian
proposal distribution Q(XjO;T) and N is the number of
samples.

B. Evaluatingthe AppeaancelLikelihood

Fourier signatureswhich we use as appearanceneasure-
ments,arecomputedby calculatingthe 1-D Fourier transform
of eachrow of the panoramicimage and storing only the
few coefcients correspondingo the lower spatialfrequencies
[34]. While morepopulardimensionalityreductiontechniques
suchas PCA [23] exist, the dravback of suchsystemsds the
needto further preprocesghe measuremenimagesin order
to obtainrotationalinvariance.ln contrastthe magnitudesof
Fouriercoefcients in a Fouriersignaturearerotation-invariant
sincepanoramidmagesare periodic. Hence,a Fourier signa-
tureyieldsalow-dimensionalyotation-irvariantrepresentation
of theimage.We useimagesobtainedrom aneight-cameraig
mountedon a robot to producepanoramicimages.The eight
imagesobtainedat eachpoint in time are stitchedtogether
automaticallyto form a 36(P view of the ervironment.

In our case,Fourier signaturesare calculatedusing a mod-

i cation of the proceduregiven in [33]. Firstly, a single row

image obtained by averagingthe rows of the input image
is calculatedand subsequentlythe one-dimensionaFourier

transformof thisimageis performed.This givesusthe Fourier

signatureof theimage.lIt is to be notedthat Fourier signatures
do not comprisea robust sourceof measurementssince the

measurementsontainmary false positives,in the sensethat

imagesfrom distinct physical locations often yield similar

Fourier signaturesThis is due to perceptuakliasingandthe

extreme compressiorof the Fourier signature However, they

have the adwvantageof being simple to computeand model.

Moreover, in conjunctionwith odometry they still produce
goodresultsas we demonstratén SectionViIl.



Evaluationof the appearancékelihoodis performedusing
(7). However, in this case gachappearanceneasuremerd; is

whereay is the kth Fourier componenin the Fourier signa-
ture. Also, we assumea similar vector form for the hidden

appearanceariablesy;, sothaty; = fyj1;viz;:::;Y¥k 9. We
canthenwrite (7) as
Wi Z
P(AJT) = P(yj1;::0Yik)

(15)
a2 Sj

Clearly, the various frequeng componentsof the Fourier
signatureareindependengiventhe correspondingppearance
variable,and hence,canbe factored,as canbe the prior over
the hidden appearancevariables. Consequentlywe modify

(15) to getthe expressionfor the appearancéikelihood as
¥ Z
P(AjT)= P(yix) P(ai jyjx) (16)
j=1 k=1 VYik ai2s

We assumdhe measurementoisein the Fourier signatures
to be Gaussiandistributed so that the model for appearance
instanceajx , belongingto the j th setS;, is alsoa Gaussian
centeredaroundthe “true appearancey; with variance jzk_
Sincewe do not know either of theseparameterswe further
model them hierarchicallyin a proper Bayesianmanner Hi-
erarchicalpriors are placedon jzk andyj : the prior on jzk
beingan inversegammadistribution while the prior ony; is
tazken to be a Gaussiardistribution with mean andvariance
-1 This particularchoiceof priorsalsoallows the integration

in (16) to be performedanalytically The appearancenodel
canthenbe summarizedhs

aik N (yjk; %) Wwherea 2 S

2
Yik N(; 2 (17)
% 1G( «; «)

wherel G denotesthe inversegammadistribution. Note that
while the value of is generallychosenso that the prior on
Yjk is vague,we usually have someextra “world knowledge”
that canbe usedto setthe valuesof the hyperparameters g
and . For example,if we expectthe value of the Fourier
signatureto vary by only a smallamountin the neighborhood
of a given location, the prior on jzk should re ect this
knowledgeby being pealed abouta speci c value.

The generatte model for Fourier signaturemeasurements
speci ed by (17) is now usedto computethe appearance
likelihood given by (16). In additionto integrating over y;,
we alsointegrateover thevariance ]_2k aswe arenotinterested
in its value. It follows that

¥ Z
PAjT)= 1G( x5 «)
jZ=1 k=1 ik
2 o
NG L9 Ny 20
Yjk

(18)

Raw Odometry

3 N

(a) (b)
Fig. 9. (a) Rav odometry(in meters)and (b) Groundtruth topology from
the ®rst experimentinvolving 9 obserations

We prove in AppendixB that performingthe integrationover
yjk and jzk givesthe expressiorfor the appearancékelihood
as

Y (i+D)
cf ( jx+1) (19)
k=1

P(AJT) [/ +

ik

NI =

j=1

where
. . 1
( +iSj)) 2
(& )+

P
+

X
ik
ai 28§
a2s; Qi
+ ]S

iSi
+ > + 1
and constantghat do not affect the likelihoodratio have been
omitted.

The appearancenodel presentedabove is not speci ¢ to
Fourier signaturesindeed,it is a generalpurposeclustering
modelthatassumeshatthe datato be clusteredaredistributed
as a mixture of Gaussianswith an unknovn number of
componentsA topology labels eachdatainstanceas arising
out of one of the mixture componentswhere the numberof
mixture componentss determinecby the topology

j =

C. Putting it Together

The odometryand appearancéik elihoodsand the prior on
topologiesrequiredto computethe target distribution (2), are
given by (14), (19) and (9) respectiely. We use this target
distribution to sampleusing Algorithm 1 asexplainedbefore.

VIl. EXPERIMENTS AND RESULTS

Three setsof experimentswere performedto validate the
Probabilistic Topological Maps algorithm. All experiments
were performedusing an ATRV-Mini mountedwith an eight-
camerarig. The landmarksin the experimentswere selected
manually In all cases,we initialized the samplerwith the
partition that assignedeachmeasuremento its own set. We
describethe experimentsand resultsbelow.

The rst experimentwas conductedusinga relatively short
run of the robot. Nine landmark locations were obsened
duringthe run of approximatelyl5 meters.Theraw odometry
obtainedfrom the robot, labeledwith the landmarklocations,



Fig. 10. Changein probability masswith maximumpenalty of the ®ve most probabletopologiesin the histogrammedosterior The histogramat the end

of eachrow givesthe probability valuesfor eachtopologyin the row.

Fig. 11. Floorplanof experimentalareafor secondexperiment

and the ground-truthtopology are shovn in Figure 9. Only
the odometrymeasurementa/ere usedin the experiment,no
appearancénformation was provided to the algorithm. This
wasdoneby simply neglectingthe appearancék elihoodterm
in (2). The penalty radius was set to 2.5 metersfor this

-40 -30 -20 -10 0 10
meters

Fig. 12. Landmarklocations(in meters)plotted usingodometryfor second
experiment

experiment.

Figure 10 shaws the evolution of the MCMC samplerfor
different values of the maximum penalty parameterin our
algorithm, it is the penalty term that facilitates merging of
nodesin the map that are the same.Without the penalty the
systemhasno incentive to move toward a topologywith lesser
numberof nodesas this increaseshe odometryerror. Table
10(a) illustratesthis case.lt can be seenthat the topology
thatis closestto the raw odometrydataand also having the



maximumpossiblenodesgetsthe maximumprobability mass.
For the rest of the caseswith maximum penaltiesequal to
50, 100, and 150 respectrely, the mostlikely solutionis the
topology indicated by the raw odometry The large error in
odometrymakesthe groundtruth topologylesslikely in these
cases.The ground truth topology is the second-mostikely
topology for maximum penalty values100 and 150. This is
becauseas the penalty is increasedthe effect of odometry
is diminishedand the ground truth topology gains more of
the probability mass.However, a very large penalty swamps
odometrydataand makes absurdtopologiesmore lik ely.

The secondexperimentdemonstrateshe usefulnesof ap-

pearancein disambiguatingnoisy odometry measurements.

Theexperimentwasconductedn anindoorof ce ervironment
where the robot traveled along the corridors in a run of
approximately200 metersand obsened nine landmarks.A
oorplan of the experimentalareais shavn in Figure 11.
The landmarklocations obtainedusing odometryare shovn
in Figure 12. As in the rst experiment,the ve mostlikely
topologiesfrom the target distribution were obtained using
only odometrymeasurementsA penaltyradiusof 20 meters
and a maximum penalty of 100 were used to obtain the
topologies, which are shavn in Figure 13. As before, the
ground truth topology receves only a small probability due
to noisy odometry

We now repeatthe experiment, but this time also using
the appearanceneasurements,e. the Fourier signaturesof
the panoramicimagesobtainedfrom the landmarklocations,
in additionto the odometry The rst ve frequenciesof the
Fourier signatureswere usedfor this purpose.The valuesof
the variancehyperparametersn the appearancenodel were
set so that the prior over the varianceis centeredat 500
with a varianceof 50. The ve most likely topologiesin
the resulting probability histogramare shavn in Figure 14.
The groundtruth topology getsthe majority of the probability
mass.This experimentillustratesthe use of appearancenea-
surementgo disambiguatanoisy odometrydata.Additionally,
it demonstrateshat the Bayesianmodel usedhereinre nes
the posteriorover topologiesgiven more data.

The third experimentwas conductedover an entire oor
of a building and was complec in the sensethat the robot
run containedtwo loops, a bigger loop enclosinga smaller
loop. Twelve landmarkswere obsered by the robot during
the run, shavn overlaid on a oorplan of the experimental
areain Figure 16. The odometryof the robot with the laser
plotted on top is shavn in Figure 15. A penaltyradiusof 3.5
metersand a maximum penalty value of 100 were usedin
this experiment.Using only the odometrymeasurementghe
groundtruth topology did appearin the ve mosttopologies
in the PTM, but receveda low probability mass Theseresults
aregivenin Figure17.

When appearancas also included, the results shift dra-
matically since there s little perceptualaliasingin this en-
vironment.Only two topologiesappearin the PTM with the
ground truth receving almostall the probability mass.This

Fig. 15. Odometryof the robot plotted with the lasermeasurementfor the
third experiment.

Fig. 16. Robotpathoverlaid on a “oorplanof the ervironmentfor the third
experiment.

VIIl. CONCLUSIONS

In the rst experiment, even though the ervironment is
small, noisy odometryresultsin the ground truth topology
not receving the highest probability mass. If a maximum
likelihood approachwere usedin this case,the resultwould
just be an incorrect topology However, using a Bayesian
methodologyto computethe posteriorover topologiesyieldsa
robustresultfor the given data.Our techniqueyields the sys-
tematic,completeanswerfor the givendata.Subsequentlythe
resulting posteriorcan be post-processedf necessaryusing
an application-speci ctechniqueto yield a single topology
On the other hand, computationssuch as planning, topolog-
ical localization and metric map creation can be performed
using the full posteriorwithout rejectingany possibility For
example, plans can be computed on multiple topological
mapssampledrom the posteriordistribution; eachplanbeing

experimentillustratesthe factthatwhenreliablemeasurements given a con dence rating proportionalto the probability of

are available,the PTM computedby our approachis sharply
pealed and concentratean very few topologies.

the sampledtopology In contrastto maximum-likelihood or
othertruncatedapproachesyurtechniqueallows suchgeneral-



(@) (b)

Fig. 13. The topologieswith highestposteriorprobability massfor the secondexperimentusing only odometry(a) an incorrecttopology receves 91% of
the probability masswhile the groundtruth topology (b) receves 6%, (c), (d) and (e) receve 0.9%, 0.8% and 0.7% respectiely.

Fig. 14. Topologieswith highestposteriorprobability massfor the secondexperimentusingodometryand appearancéa) The groundtruth topologyreceves
94% of the probability masswhile (b), (c), (d) and(e) receve 3.2%, 1.2%, 0.3% and 0.3% of the probability massrespeciiely.

Fig. 17. Topologieswith highestposteriorprobability massfor the third experimentusing only odometry (a) receves 43% of the probability masswhile
(b), (c), (d) and(e) receve 14%, 7.3%, 3.9% and 2.8% of the probability massrespectiely. The groundtruth topologyis (c).

purpose application-speci cuseof the output.

The rst experimentalsohighlightsthe sensitvity of thein-
ferenceto the penaltyparametersAs pointedout by a referee,
this problemis a fundamentalone arising from the attempt
to combinetwo incommensurableneasure®f goodnessone
beingthe continuousprobability massderived from odometry
andthe otherbeinga discretepreferencdor a smallernumber
of distinct places.While we have usedthe prior on landmark
locationsto addresghisissuein this work, thisis by no means
the optimal solutionto the problem.

The secondexperiment illustrates the power of using a
Bayesianapproachn the sensethat goodresultsare obtained
evenwith noisydata,whenalargeamountof datais available.
Initially, due to odometrydrift in the large ervironmentthe

information available to the algorithmis limited, and hence,
an incorrecttopology getsa large majority of the probability
mass.However, the inclusion of appearanceneasurements,
which are themseles noisy, in the inferenceresultsin a
posteriorin which the ground-truthtopology is highly prob-
able. Note, however, that this doesnot imply that the second
posterioris betterin arny sensesince there exists only one
posteriorfor a given set of measurementsThe experiment
merely afrms the fact that use of more data from varied
sourcesimproves Bayesianinferenceand yields more robust
results.In particular noisy odometryand aliasedappearance
may combine to prevent the ground truth topology from
becominghe maximumaposteriori(MAP) topologyevenafter
a long exploratory sequence.



Fig. 18. The two topologiesconstitutingthe PTM whenboth odometryand
appearanceneasurementare used. The ground truth topology on the left
receves 99.5% of the probability mass.

Theseconclusionsare con rmed by the third experiment,
which in addition demonstrateghat with reliable measure-
ments the posterior becomessharply pealed and the PTM
approachdefaults to a mappingmethodthat nds a single,
maximumlik elihood topology

IX. DISCUSSION

We presentedhe novel idea of computingdiscreteprob-
ability densitiesover the spaceof all possible topological
maps.The ProbabilisticTopologicalMapsarecomputedusing
Markov Chain Monte Carlo samplingover set partitionsthat
are usedto encodethe topologies.PTMs are a systematic
solution to the perceptualaliasing problem in topological
mappingand provide an optimal estimationof the posterior
distribution over topologiesfor the given measurementaiNe
provide a generalframework for estimatingthe posteriorover
the spaceof topologiesandtwo speci ¢ modelsfor computing
measurementik elihood, one using odometry and the other
using appearanceThe odometrylik elihood computationuses
a simple spatial prior on landmark distribution in the form
of a cubic penalty function that disallons proximity among
landmarksTheappearancenodelusedin this work dealswith
Fourier signaturesof panoramicimages.The model clusters
similar appearanceneasurementas coming from the same
spatial location. Experimentalresults on ervironmentswith
varied sizesdemonstratehe applicability of PTM.

One adwantage of our approachis that an estimate of
topology is possibleeven if only a meageramountof in-
formation is available. It is not the purposeof this work to
nd the besttopological map, but to computethe posterior
probability densityover topologicalspaceasper the Bayesian
approachWe have shawn this capability in experimentsthat
useonly odometryfrom the robot to createdistributions that
can either correspondto the odometry or the prior (in this
casethe spatial penalty function) as parametersare varied.
Appearancemodeling has largely been used in this work
as a disambiguationmechanismfor odometry i.e. by either

increasingor decreasinghe evidencefor the odometry Of
course,sophisticatecappearancenodelsthat are more robust
to perceptualaliasing could be used. However, our use of
low resolution Fourier signaturesdemonstrateshe ability
of our systemto cope with ervironmentscontainingbarely
distinguishabldandmarks.

The PTM algorithmis a major steptowardsacknavledging
the ideathat the ideal mappingalgorithm, capableof produc-
ing anaccuratanapin ary ervironmentusingjusttheavailable
measurementsnay not exist. Instead the mappingalgorithm
should be able to reasonaboutand ag ary uncertaintyit
might have aboutthe mapsit is generating.This is precisely
whatPTMsaccomplishPTMs could alsobe usedasthe basis
to createa posteriorover all possiblemetric mapsusing the
approachgivenin [35].

We have shavn thattheinferencespacan which we operate
is combinatorial. However, this doesnot causeproblemsin
scalability sincein real ervironmentsthe measurementpro-
vide enoughinformation so that the posterioris concentrated
on a few topologies.Evenif all thelandmarksin the environ-
mentare perfectly aliased,inferencebasedon only odometry
still leadsto a pealed posterior[43]. Only in the pathological
caseof very poor odometryand perfectly aliasedappearance
do we encounterproblems of scalability However, in this
extreme case, the measurementslo not provide sufcient
information and hence the algorithm can hardly be blamed.

Currently the PTM algorithmrequires ve parameterso be
choserby theuser Thesearethe penaltyradiusandmaximum
penalty valuesfor the odometrylikelihood, and the and

variance hyperparametersand the number of frequeny

componentdor the appearancékelihood.The penaltyvalues
dependbon the sizeandscaleof the ervironmentbeingmapped
and needto be empirically determinedfor eachervironment.
This is alsothe casefor the variancehyperpriors, which en-
codethevariationin appearancealuesfrom the sameocation
in the environment.Changesn lighting, cameradistortionand
other measurementoise may make this variationlarge. It is
our experiencethat thereis rarely needto use more thanthe
rst vefrequengy componentsn the appearancenodel. This
is becausethe higher frequengy componentsmnainly contain
noise,which we do not seekto model.lt is alsoto be noted
that while we use Fourier signaturesn this work, ary other
rotation-invariant dimensionalityreductiontechniquecan be
usedinstead.

While we only provide lik elihood modelsfor odometryand
appearancea simple extensionto laserdatais also possible.
If two lasersare usedto gather 36(° laser scansat the
landmarklocations, the likelihood of two scansbeing from
the samelocationcanbe computedusingscanmatching.This
likelihood,extendedto multiple scancomparisoncanbe used
to sampleover partitions.

A problemwith the currentsetupis the useof a singlevalue
for the penaltyradius.This cancausepoor performancef the
distribution of landmarksvaries acrossthe ernvironment, for
example,if mostof the landmarksoccurin a closely-spaced
groupbut theremaindemrespreadvide apart.Finding clusters
at different scalesis a well-researchegroblemin machine
learning and it is future work to apply thosetechniquesto



automatethe processof settingthe penaltyradius.
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APPENDIX A

To derive the expressiorfor the prior over topologiesgiven
in (8), we notethatthe setupcanbe corvertedinto anurn-ball
modelby consideringandmarkso be urnsandmeasurements
to be balls, yielding L urnsandN balls. We now shav that
the urn-ball modelyields a prior over set partitions,which is
also a prior over topologiesdue to the isomorphismbetween
topologiesand set partitions.

A setpartition on the measurements createdoy randomly
addingthe balls to the urns, whereit is assumedhat a ball
is equally likely to land in ary urn (i.e. thereis a uniform
distribution on the urns). The distribution on the number of
occupiedurns, after adding all the N balls randomlyto the
urns,is givenby the ClassicalOccupanyg Distribution [22] as

L
M

P(M) = L Nmt (20)

M

where ,\': is the Stirling numberof the secondkind.

The number of occupiedurns after adding all the balls
correspondso the numberof distinctlandmarksin the topol-
ogy, while the speci ¢ allocation of balls to urns (called an
allocationvector)correspondso thetopologyitself. Also, (20)
assignsan equal probability to all ball allocationswith the
samenumberof occupiedurns.Hence,we caninterpret(20)
as

P(M)/ P(allocationvectorwith M occupiedurng
No. of allocationvectorswith M occupiedurns (21)

The numberof allocation vectorswith M occupiedurns is
equalto the numberof partitions of the set of balls into M
subsets.This is preciselythe Stirling numberof the second

kind ,\’\,‘I . Combining this obsenation with (20) and (21)
yields
. . . L N
P (allocationwith M occupiedurng / L "M!

As mentionedpreviously, the probability of an allocation
vector corresponddo the probability of a topology Hence,
the prior probability of a topology T with M landmarksis

LN L

M)!

P(TIL) = K

which s the prior in (8). Specifyinga differentdistribution on
the allocationof balls to urns, ratherthan the uniform distri-
bution assumedabove, yields differentpriors on topologies.

APPENDIX B

To obtainthe expressiorfor the appearancik elihoodgiven
in (19), considerthe integral in (7) which is the probability of
a setin the topology taking into accountonly one frequeng
componentZ

P(S) P( 2Pk &) P(ai j Yik: )

2 .y
ikYik a2 S;

Pluggingin the functional forms of the distributions de ned
in the model (17), we get
z

Z 1
) B;
P(S) = K A Me T etRT
j2k Yik
where
3
Ki = —— ——
] ( )(2 )15151
iSj, 3
A = + —= + —
! 2 2
Bix = (Y )+ (@ Yik)
ai 28§
Performingthe inner integration, we get
z ;o3 )
P(S) = K° A e (22)
J'zk
where
1
1 2
KO = _
@2 )JST'J () + 5]
— ? 2 X 2 2
ik = )+ ak  jk
P aiZSj
' + S
i = + JSTjJ+ 1

We now provide here a useful de nition of the Gamma
function

z 1
o (+1
e Lt dt -
usingwhich (22) canbe integrated(notethatt correspondso

;i) to yield

(j+1
(j+1)

P(S) = K°

1
t 5ok

whence(19) follows.

REFERENCES

[1] Proc. 19" AAAI National Confeence on Al, Edmonton, Alberta,
Canada2002.

[2] O. Aycard, F. Charpillet, D. Fohr, and JE Mari. Placelearning and

recognitionusing hidden markov models. In IEEE/RSJIntl. Conf on

Intelligent Robotsand SystemgIROS) pagesl741-17461997.

[3] W. Burgard,D. Fox, H. Jans,C. Matenar and S. Thrun. Sonarbased
mappingof large-scalemobile robot environmentsusing EM. In Intl.
Conf on Machine Learning(ICML), pagess7-76,Bled, Slovenia,1999.



(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

J.A. Castellanosand J.D. Tardos. Mobile RobotLocalizationand Map
Building: A MultisensorFusionApproad. Kluwer AcademicPublishers,
Boston,MA, 2000.

H. Chosetand K. Nagatani. Topologicalsimultaneoudocalizationand
mapping (SLAM): toward exact localization without explicit localiza-
tion. |IEEE Trans.Robot.Automat, 17(2):125- 137, April 2001.

F. Dellaert, S.M. Seitz, C.E. Thorpe,and S. Thrun. EM, MCMC, and

chainipping for structurefrom motionwith unknavn correspondence.

Madhine learning 50(1-2):45-71January- February2003. Special
issueon Markov chain Monte Carlo methods.

G. Dissanaya&, H. Durrant-Whyte,and T. Bailey. A computationally
ef®cient solution to the simultaneouslocalisation and map building
(SLAM) problem.Working notesof ICRA2000 WorkshopW4: Mobile
Robot Navigation and Mapping, April 2000.

T. Duckett. A genetic algorithm for simultaneouslocalization and
mapping. In IEEE Intl. Conf on Roboticsand Automation (ICRA),
pages434-439,2003.

G. Dudek, S. Hadjres,and P. Freedman.Using local informationin a
non-localway for mappinggraph-like worlds. In IJCAI, pages1639-
1645,1993.

G. Dudek and D. Jugessur Rohust place recognition using local
appearancebased methods. In IEEE Intl. Conf on Robotics and
Automation(ICRA), pages1030-10352000.

H.F. Durrant-Whyte, S. Majunder S. Thrun, M. de Battista, and
S. Scheding. A Bayesianalgorithm for simultaneoudocalizationand
map building. In Proceedingsf the 10th International Symposiunof
RoboticsReseath, 2001.

A. Elfes. Occupang grids: A probabilistic framevork for robot
perceptionand navigation. Journal of Roboticsand Automation RA-
3(3):249-265,Junel987.

A. Gelman,J.B. Carlin, H.S. Stern,and D.B. Rubin. BayesianData
Analysis ChapmanandHall, 1995.

W.R. Gilks, S.RichardsonandD.J. Spiggelhaltey editors.Markov chain
Monte Carlo in practice ChapmarnandHall, 1996.

A. Griewank. On Automatic Differentiation. In M. Iri andK. Tanabe,
editors, MathematicalProgramming: RecentDevelopmentsand Appli-
cations pages83-108.Kluwer AcademicPublishers1989.

R. Gutierrez-Osunand R. C. Luo. Lola: Probabilistic navigation for
topologicalmaps. Al Magazine 17(1):55-62,1996.
J.-S.Gutmannand K. Konolige. Incrementalmappingof large cyclic
ervironments. In IEEE Intl. Symp.on Computationallntelligencein
Roboticsand Automation(CIRA), pages318-325,November2000.

D. Héhnel, W. Burgard, D. Fox, and S. Thrun. A highly ef®cient
FastSLAM algorithm for generatingcyclic mapsof large-scaleervi-
ronmentsfrom raw laserrangemeasurementdn IEEE/RSJIntl. Conf
on Intelligent Robotsand SystemgIROS) 2003.

D. Hahnel,W. Burgard, B. Wegbreit,and S. Thrun. Towardslazy data
associatiorin SLAM. In Proceedingf the 11th International Sympo-
sium of RoboticsReseath (ISRR'03) Sienna,ltaly, 2003. Springer
W.K. Hastings. Monte Carlo samplingmethodsusing Markov chains
andtheir applications.Biometrika 57:97-109,1970.

H. Ishiguro,K. C. Ng, R. Capella,andM. M. Trivedi. Omnidirectional
image-basedmodeling: three approachesto approximatedplenoptic
representationsMachine Vision and Applications 14(2):94-1022003.
N. L. Johnsonand S. Kotz. Urn Modelsand their Applications John
Wiley and Sons,1977.

I. T. Jolliffe. Principal Componentnalysis Springer 1986.

L.P. Kaelbling, A.R. Cassandraand J.A. Kurien. Acting under un-
certainty: Discrete Bayesianmodels for mobile-robot navigation. In
IEEE/RSJIntl. Cont on Intelligent Robotsand SystemgIROS) 1996.
K. KonoligeandJ.-S.Gutmann.Incrementamappingof large cyclic en-
vironments.In International Symposiunon Computationalntelligence
in Roboticsand Automation(CIRA99), 1999.

D. Kortenkampand T. Weymouth. Topological mapping for mobile
robotsusinga combinationof sonarandvision sensing.In Proceedings
of the Twelfth National Confeenceon Arti cial Intelligence pages979—
984,1994.

B. Kuipersand P. Beeson.Bootstraplearningfor placerecognition.In
Proc. 19" AAAI National Confeenceon Al [1], pages174—180.
B.J.KuipersandY.-T. Byun. A robot explorationand mappingstratey
basedon a semantichierarchy of spatial representations.Journal of
Roboticsand AutonomousSystems8:47-63,1991.

J.J.Leonardand H.F. Durrant-Whyte. Simultaneousmap building and
localizationfor an autonomousnobile robot. In IEEE Int. Workshopon
Intelligent Robotsand Systemspagesl1442—-14471991.

(30]

[31]

[32]

(33]

[34]

[35]

(36]

[37]

(38]
[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]
[52]

(53]

[54]

[55]

[56]

B. Lisien, D. Morales,D. Silver, G. Kantor, I. Rekleitis,andH. Choset.
Hierarchicalsimultaneoudocalizationand mapping. In IEEE/RSJIntl.
Conf on Intelligent Robotsand Systemg¢IROS) pages448-453,2003.
F. Lu and E. Milios. Globally consistentrange scan alignment for
ervironmentmapping.Autonomouskobots pages333—-349 April 1997.
M. J. Mataric. A distributed model for mobile robot environment-
learning and navigation. Masters thesis, MIT, Arti®cial Intelligence
Laboratory Cambridge,January1990. Also available as MIT Al Lab
TechReportAITR1228.

E. Menaatti, T. Maeda,andH. Ishiguro.Image-basedemoryfor robot
navigation using propertiesof the omnidirectionalimages. Journal of
Roboticsand AutonomousSystems47(4):251-2672004.

E. Menggatti, M. Zoccarato,E. Pagello, and H. Ishiguro. Image-
basedMonte-Carlolocalisationwith omnidirectionalimages. Journal
of Roboticsand AutonomousSystems48(1):17—-30August2004.

J. Modayil, P. Beeson,and B. Kuipers. Using the topologicalskeleton
for scalableglobal metrical map-luilding. In IEEE/RSJIntl. Conf on
Intelligent Robotsand SystemgIROS) 2004.

M. Montemerloand S. Thrun. Simultaneoudocalizationand mapping
with unknavn dataassociatiorusing FastSLAM. In IEEE Intl. Cont
on Roboticsand Automation(ICRA), 2003.

M. Montemerlo,S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factoredsolutionto the simultaneougdocalizationandmappingproblem.
In Proc. 19" AAAI National Confeenceon Al [1].

H.P. Moravec. Sensorfusion in certainty grids for mobile robots. Al
Magazine 9:61-74,1988.

K. Murphy. Bayesianmap learning in dynamic ervironments. In
Advancesn Neuml Information ProcessingSystemgNIPS) 1999.

J. NeiraandJ.D. Tardés. Dataassociatiorin stochastianappingusing
the joint compatibility test. IEEE Trans. Robot. Automat, 17(6):890—
897, December2001.

A. NijenhuisandH. Wilf. CombinatorialAlgorithms AcademicPress,
2 edition, 1978.

D. PierceandB. Kuipers. Map learningwith uninterpretedsensorsand
effectors. Arti cial Intelligence 92:169-229,1997.

A. Ranganathamnd F. Dellaert. Inferencein the spaceof topological
maps:An MCMC-basedapproachln IEEE/RSJntl. Conf on Intelligent
Robotsand SystemgIROS) 2004.

E. Remolinaand B. Kuipers. Towardsa generaltheory of topological
maps. Arti cial Intelligence 152(1):47-1042004.

F. Savelli and B. Kuipers. Loop-closingand planarity in topological
map-tuilding. In IEEE/RSJntl. Cont on Intelligent Robotsand Systems
(IROS) 2004.

H. Shatkayand L. Kaelbling. Learningtopological mapswith weak
local odometricinformation. In Proceedingsof 1JCAI-97, pages920—
929,1997.

R. Simmonsand S. Koenig. Probabilisticrobot navigation in partially
obserable ervironments. In Proc. International Joint Confeence on
Arti cial Intelligence pages1080— 1087,1995.

R. Smith, M. Self, and P. Cheeseman. Estimating uncertainspatial
relationshipsn Robotics.In . CoxandG. Wilfong, editors,Autonomous
Robot\ehicles pages167-193.Springe+Verlag, 1990.

R. Smith, M. Self, andP. CheesemanA stochasticmap for uncertain
spatialrelationshipsin S. S. lyengarandA. Elfes, editors,Autonomous
Mobile Robots: Perception, Mapping and Navigation (Vol. 1), pages
323-330.[EEE ComputerSociety PressLos Alamitos, CA, 1991.

B. Stewart, J. Ko, D. Fox, and K. Konolige. The revisiting problem
in mobile robot map building: A hierarchicalBayesianapproach. In
Proc. 19" Conf onUncertaintyin Al (UAI), pages551-558 Acapulco,
Mexico, August2003.

S. Thrun. Learning metric-topologicalmapsfor indoor mobile robot
navigation. Arti cial Intelligence 99(1):21-71,1998.

S. Thrun. A probabilisticonline mappingalgorithmfor teamsof mobile
robots. Intl. J. of RoboticsReseath, 20(5):335-3632001.

S. Thrun, D. Fox, and W. Burgard. A probabilisticapproachto con-
currentmappingand localizationfor mobile robots. Machine learning
31:29-53,1998.

S.Thrun, S. GutmannD. Fox, W. Burgard,andB. Kuipers. Integrating
topologicaland metric mapsfor mobile robot navigation: A statistical
approach.In Proc. 15" AAAI National Confeenceon Al, pages989—
995, 1998.

L. Tierngy and J. B. Kadane. Accurate approximationsfor posterior
momentsandmaginal distributions. Journal of the AmericanStatistical
Association 81:82—-86,1986.

N. Tomatis, . Nourbakhsh,and R. Siegwart. Hybrid simultaneous
localizationand map building: Closing the loop with multi-hypotheses



[57]

[58]

tracking.In IEEE Intl. Conf on Roboticsand Automation(ICRA), pages
2749-27542002.

B. Yamauchiand R. Beer Spatiallearningfor navigation in dynamic
ervironments. IEEE Transactionson SystemsMan, and Cybernetics-
Part B, Speciallssue on Learning AutonomousRobots 26:496-505,
1996.

B. Yamauchiand P. Langle). Placerecognitionin dynamic erviron-
ments. Journal of Robotic Systems14(2):107-120,February 1997.
Speciallssueon Mobile Robots.



