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Abstract— While probabilistic techniqueshave previously been
investigatedextensively for performing inferenceover the space
of metric maps,no correspondinggeneral purposemethodsexist
for topological maps. We present the concept of Probabilistic
Topological Maps (PTMs), a sample-basedrepresentation that
approximates the posterior distrib ution over topologies given
available sensor measurements. We show that the space of
topologies is equivalent to the intractably large space of set
partitions on the set of available measurements. The combi-
natorial nature of the problem is overcome by computing an
approximate, sample-basedrepresentationof the posterior. The
PTM is obtainedby performing Bayesianinferenceover the space
of all possible topologies and provides a systematic solution to
the problem of perceptual aliasing in the domain of topological
mapping. In this paper, we describe a general framework for
modeling measurements,and the use of a Mark ov chain Monte
Carlo (MCMC) algorithm that uses speci�c instancesof these
models for odometry and appearancemeasurementsto estimate
the posterior distrib ution. We presentexperimental results that
validate our technique and generate good maps when using
odometry and appearance,derived fr om panoramic images,as
sensormeasurements.

I . INTRODUCTION

Mapping an unknown and uninstrumentedenvironment is
one of the foremost problems in robotics. For this pur-
pose, both metric maps [12][38][37] and topological maps
[44][5][32][26] have been explored in depth as viable rep-
resentationsof the environment. In both cases,probabilistic
approacheshave hadgreatsuccessin dealingwith theinherent
uncertaintiesassociatedwith robot sensori-motorcontrol and
perception,that would otherwisemake map-building a very
brittle process.Lately, the vastmajority of probabilisticsolu-
tions to themappingproblemalsosolve the localizationprob-
lem simultaneouslysince thesetwo problemsare intimately
connected.A solution to this SimultaneousLocalizationand
Mapping(SLAM) problemdemandsthat the algorithmmain-
tains beliefs over the poseof the robot as well as the map
of the environment.The poseand the map are then updated,
eitherrecursively, assumingthebelief abouttheotherquantity
to be �x ed [37], or simultaneously[53].

The majority of the work in robot mapping deals with
the construction of metric maps. Metric maps provide a
�ne-grained representationof the actual geometricstructure
of the environment. This makes navigation easy, but also
introducessigni�cant problemsduring their construction.Due
to systematicerrorsin odometry, themaptendsto accumulate
errorsover time, which makes global consistency dif�cult to
achieve in large environments.

Topological representations,on the other hand, offer a
differentset of advantagesthat areuseful in many scenarios.

Fig. 1. The camerarig mountedon the robot used to obtain panoramic
images

Topologicalmapsattemptto capturespatialconnectivity of the
environmentby representingit asa graphwith arcsconnecting
thenodesthatdesignatesigni�cant placesin theenvironment,
suchascorridor junctionsand room entrances[28]. The arcs
areusuallyannotatedwith navigation information.

Arguably the hardestproblem in robotic mapping is the
perceptualaliasingproblem,which is an instanceof the data
associationproblem, also variously known as “closing the
loop” [18] or “the revisiting problem” [50]. It is the problem
of determiningwhethersensormeasurementstakenatdifferent
pointsin time correspondto thesamephysicallocation.When
a robot receivesa new measurement,it hasto decidewhether
to assignthismeasurementto oneof thelocationsit hasvisited
previously, or to a completely new location. The aliasing
problemis hardasthenumberof possiblechoicesgrowscom-
binatorially. Indeed,we demonstratebelow that thenumberof
choicesis the sameas the numberof possiblepartitions of
a set, which grows hyper-exponentially with the cardinality
of the set.Previous solutionsto the aliasingproblem[53][25]
commit to a speci�c correspondencebetweenmeasurements
and locations at each step, so that once a wrong decision
hasbeenmade,the algorithmcannotrecover. Othersolutions
[27][10][26] perform well in most situationsbut fail silently
in environmentswherethe problemis particularly hard, thus
returninga wrong mapof the environment.

The major contribution of this work is the ideaof de�ning
a probability distribution over the spaceof topologicalmaps



Fig. 2. A panoramicimageobtainedfrom the robot camerarig

and the use of samplingin order to obtain this distribution.
The key realizationhereis that a distribution over this com-
binatorially large spacecan be succinctly approximatedby
a sampleset drawn from the distribution. In this paper, we
describeProbabilistic Topological Maps (PTMs), a sample-
basedrepresentationthat capturesthe posterior distribution
over all possibletopologicalmapsgiven the available sensor
measurements.

The intuitive reasonfor computingthe posterioris to solve
the aliasing problem for topologiesin a systematicmanner.
Thesetof all possiblecorrespondencesbetweenmeasurements
and the physical locationsfrom which the measurementsare
taken is exactly thesetof all possibletopologies.By inferring
the posterioron this set,wherebyeachtopologyis assigneda
probability, it is possibleto locatethe more probabletopolo-
gies without committing to a speci�c correspondenceat any
point in time, thusproviding the mostgeneralsolutionto the
aliasing problem.Even in pathologicalenvironments,where
almost all current algorithms fail, our technique provides
a quanti�cation of uncertaintyby pegging a probability of
correctnessto eachtopology. While sample-basedestimation
of the posterior over data associationshas previously been
discussedin computervision [6], its usein robotic mapping
to �nd adistributionoverall possiblemapsis completelynovel
to the bestof our knowledge.

As a secondmajor contribution, we show how to perform
inferencein thespaceof topologiesgivenuncertainsensordata
from the robot. We provide a generaltheory for incorporat-
ing odometryand appearancemeasurementsin the inference
process.More speci�cally, we describean algorithmthatuses
Markov chainMonte Carlo (MCMC) sampling[14] to extend
the highly successfulBayesianprobabilisticframework to the
spaceof topologies.To enablesamplingover topologiesusing
MCMC, each topology is encodedas a set partition over
the set of landmarkmeasurements.We then sampleover the
spaceof setpartitions,usingastargetdistribution theposterior
probability of the topologygiven the measurements.

Another importantaspectof this work is the de�nition of
a simple but effective prior on the density of landmarksin
the environment. We demonstratethat given this prior, the
additionalsensorinformationneededcanbeveryscantindeed.
In fact, our methodis generalandcan deal with any type of
sensormeasurementor prior knowledge.Moreover, any newly
availableinformationfrom thesensorscanbeusedto augment
the previous available information to improve the quality of
the PTM. In our experiments,we show that even when the
systemproducesnice maps of the environment using only
odometrymeasurements,we can get better quality mapsby
usingappearancedatain addition to the odometry.

We provide a general-purposeappearancemodel in this
work and illustrate its application using Fourier signatures
[21][33] of panoramic images.The panoramic images are
obtainedfrom a camerarig mountedon a robot as shown
in Figure1. An exampleof sucha panoramicimageis shown
in Figure 2. Fourier signatures,which have previously been
used in the context of memory-basednavigation [33] and
localization using omni-directional vision [34], are a low-
dimensionalrepresentationof images using Fourier coef�-
cients. They allow easy matching of images to determine
correspondence.Further, due to the periodicity of panoramic
images,Fouriersignaturesarerotation-invariant.This property
is of prime importance when determining correspondence
since the robot may be moving in different directionswhen
the imagesareobtained.

In subsequentsections,we provide relatedwork in proba-
bilistic mappingin generalandtopologicalmappingin partic-
ular. Then,we de�ne ProbabilisticTopologicalMapsformally
andprovidea theoryfor estimatingtheposteriorover thespace
of topologies.Subsequently, we describean implementation
of the theory using MCMC sampling in topological space,
followedby a sectionwith detailsaboutthespeci�c odometry
and appearancemodelswe used.A prior over the spaceof
topologiesis alsodescribed.Finally, in SectionVII we provide
experimentalvalidationfor our technique.

I I . RELATED WORK

Our work relatesto the areaof probabilisticmappingand,
more speci�cally, to topologicalmapping.Below we review
relevant prior researchin theseareas.

A. Probabilistic Mappingand SLAM

Early approachesto themappingproblem(usuallyobtained
by solving the SLAM problem)usedKalman �lters and Ex-
tendedKalman�lters [29][4][7][11][49][48] on landmarksand
robot pose.Kalman �lter approachesassumethat the motion
model, the perceptualmodel (or the measurementmodel)
andthe initial statedistribution areall Gaussiandistributions.
ExtendedKalman�lters relaxtheseassumptionsby linearizing
the motion model using a Taylor series expansion.Under
theseassumptions,the Kalman �lter approachcan estimate
the completeposterior over maps ef�ciently . However, the
Gaussianassumptionsmean that it cannot maintain multi-
modaldistributionsinducedby themeasurementof a landmark
that looks similar to anotherlandmarkin the environment.In
otherwords,theKalman�lter approachis unableto copewith
the correspondenceproblem.

A well-known algorithm that incorporatessmoothing,in-
steadof Kalman �ltering, is the Lu/Milios algorithm [31],



a laser-speci�c algorithm that performsmaximumlikelihood
estimation of the correspondence.It iterates over a map
estimationandadataassociationphasethatenableit to recover
from wrong correspondencesin the presenceof small errors.
However, the algorithm encounterslimitations when faced
with large poseerrorsand fails in large environments.

Rao-BlackwellizedParticle Filters (RBPFs)[39], of which
the FastSLAM algorithm [37] is a speci�c implementation,
are also theoretically capableof maintaining the complete
posteriordistribution overmapsunderassumptionof Gaussian
measurements.This is possible since each sample in the
RBPFcanrepresenta differentdataassociationdecision[36].
However, in practicethedimensionalityof thetrajectoryspace
is too large to be adequatelyrepresentedin this approach,
and often the ground-truthtrajectory along with the correct
dataassociationwill be missedaltogether. This problemis a
fundamentalshortcomingof the importancesamplingscheme
used in the RBPF, and cannot be dealt with satisfactorily
except by an exponentialincreasein the numberof samples,
which is intractable.One solution to this problem, which
involves keepingall possibledataassociationsin a tree and
searchingthrough them at eachtime step, is given in [19].
Anotherproblemwith RBPFsis their sensitivity to odometry
drift over time. Recentwork by Haehnelet al. [18] tries to
overcomethe odometrydrift by correctingfor it throughscan
matching,but this only alleviatestheproblemwithout solving
it completely.

Yet anotherapproachto SLAM that has beensuccessful
is the useof the EM algorithm to solve the correspondence
problemin mapping[53][3]. The algorithm iteratesbetween
�nding the most likely robot poseand the most likely map.
EM-basedalgorithmsdo not computethe completeposterior
over maps,but insteadperformhill-climbing to �nd the most
likely map.Suchalgorithmsmake multiple passesover sensor
datawhich makesthemextremelyslow andun�t for on-line,
incrementalcomputation.In addition, EM cannotovercome
local minima, resulting in incorrect data associations.Other
approachesexist that reportloop closuresandre-distribute the
error over the trajectory[17][40][52][50], but thesedecisions
areagainirrevocableandhencemistakescannotbe corrected.

Recent work by Duckett [8] on the SLAM problem is
similar to our own, in the sensethat he too dealswith the
spaceof possiblemaps.The SLAM problemis presentedas
a global optimization problem and metric maps are coded
as chromosomesfor use in a geneticalgorithm. The genetic
algorithmsearchesover the spaceof maps(or chromosomes)
and �nds the most likely map using a �tness function. This
approachdiffers from oursby computingthe maximumlike-
lihood solution as opposedto the completeposterioras we
do. In consequence,it suffers from brittlenesssimilar to other
techniquesdescribedpreviously.

B. Topological Maps

Maintaining the posterior distribution over the spaceof
topologies results in a systematicand robust solution to
the aliasing problem that plaguesrobot mapping. Though
probabilistic methodshave been used in conjunction with

topologicalmapsbefore,noneexist thatarecapableof dealing
with the inferenceof the posteriordistribution over the space
of topologies.A recentapproachgivesan algorithm to build
a tree of all possibletopological maps that conform to the
measurements,but in a non-probabilisticmanner [45][44].
Dudek.et. al. [9] have also given a techniquethat maintains
multiple hypothesesregardingthe topologicalstructureof the
environmentin theform of anexplorationtree.Most instances
of previous work extant in the literature that incorporate
uncertaintyin topologicalmaprepresentationsdonotdealwith
generaltopologicalmaps,but with theuseof markov decision
processesto learn a policy that the robot follows to navigate
the environment.

Simmonsand Koenig [47] model the environment using
a POMDP in which observations are used to updatebelief
states.Another approachthat is closer to the one presented
here, in the senseof maintaining a multi-hypothesisspace
over correspondences,is givenby Tomatiset al. [56] andalso
usesPOMDPsto solve thecorrespondenceproblem.However,
while in their casea multi-hypothesisspaceis maintained,it
is usedonly to detectthe points wherethe probability mass
splits into two. Also, like a lot of others, this work uses
speci�c qualitiesof the indoorenvironmentsuchasdoorsand
corridorjunctions,andhenceis not generallyapplicableto any
environment.ShatkayandKaelbling[46] usetheBaum-Welch
algorithm,a variantof theEM algorithmusedin thecontext of
HMMs, to solve thealiasingproblemfor topologicalmapping.
Otherexamplesof HMM-basedwork include[24][16] and[2]
wherea secondorderHMM is usedto modeltheenvironment.

Lisien et al. [30] have provided a method that combines
locally estimatedfeature-basedmapswith a global topological
map.Dataassociationfor the local mapsis performedusinga
simpleheuristicwhereineachmeasurementis associatedwith
the existing landmark having the minimum distanceto the
measuredlocation.A new landmarkis createdif this distance
is above a threshold.The setof local mapsis thencombined
usingan“edge-map”association,i.e. the individual landmarks
are aligned and the edgescompared.This technique,while
suitablefor mappingenvironmentswherethe landmarkloca-
tions aresuf�ciently dissimilar, is not robust in environments
with large or multiple loops.

Many topological approachesto mapping, related to our
work only in the sensethat they form a signi�cant part of
the topological mapping literature, include robot control to
help solve the correspondenceproblem.This is achieved by
maneuveringtherobotto theexactspotit wasin whenvisiting
thelocationpreviously, sothatcorrespondencebecomeseasier
to compute. Examples of this approach include Choset's
GeneralizedVoronoi Graphs[5] andKuipers' SpatialSeman-
tic Hierarchy [28]. Other approachesthat involve behavior-
basedcontrol for exploration-basedtopological mappingare
also fairly common. Mataric [32] usesboundary-following
and goal-directednavigation behaviors in combinationwith
qualitative landmarkidenti�cation to �nd a topological map
of the environment.A completebehavior-basedlearningsys-
tem basedon the Spatial SemanticHierarchy that learnsat
many levels starting from low-level sensori-motorcontrol to
topological and metric mapsis describedin [42]. Yamauchi



et al. [57][58] use a reactive controller in conjunctionwith
an Adaptive PlaceNetwork that detectsand identi�es special
placesin the environment.Theselocationsare subsequently
placedin a network denotingspatialadjacency.

Some other approachesuse a non-probabilisticapproach
to the correspondenceproblem by applying a clusteringal-
gorithm to the measurementsto identify distinctive places,
an instancebeing [27]. Finally, SLAM algorithms used to
generatemetric maps have also been applied to generating
integrated metric and topological maps with some success.
For instance,Thrun et al. [54] usethe EM algorithmto solve
thecorrespondenceproblemwhile building a topologicalmap.
The computedcorrespondenceis subsequentlyused in con-
structinga metricmap.By contrast,Thrun [51] �rst computes
a metric mapusingvalue iterationandusesthresholdingand
Voronoi diagramsto extract the topology from this map.

I I I . PROBABIL ISTIC TOPOLOGICAL MAPS

A ProbabilisticTopological Map is a sample-basedrepre-
sentationthat approximatesthe posteriordistribution P(T jZ )
over topologiesT given observationsZ . While the spaceof
possiblemapsis combinatorial,a probabilitydensityover this
spacecan be approximatedby drawing a sampleof possible
mapsfrom the distribution. Using the samples,it is possible
to constructa histogramon the supportof this sampleset.

We do not consider the issue of landmark detection in
this work. Instead,we assumethe availability of a “landmark
detector”thatsimplydetectsa landmarkwhentherobotis near
(or on) a landmark.Subsequently, odometryand appearance
measurementsfrom the landmark location are stored, the
appearancemeasurementsbeing in the form of images.The
odometrycanbe saidto measurethe landmarklocationwhile
the imagesmeasurethe landmarkappearance.No knowledge
of the correspondencebetweenlandmarkmeasurementsand
the actual landmarksis given to the robot: indeed, that is
exactly the topology that we seek.The problem then is to
computethediscreteposteriorprobabilitydistribution P(T jZ )
over the spaceof topologies.

Our techniqueexploits the equivalencebetweentopologies
of an environment and set partitions of landmarkmeasure-
ments,whichgroupthemeasurementsinto asetof equivalence
classes.Whenall themeasurementsof thesamelandmarkare
groupedtogether, this naturallyde�nesa partitionon thesetof
measurements.It canbeseenthata topologyis nothingbut the
assignmentof measurementsto setsin the partition, resulting
in the above mentionedisomorphismbetweentopologiesand
set partitions.An example of the encodingof topologiesas
setpartitionsis shown in Figure3.

We begin our considerationby assumingthat the robot
observesN “specialplaces”or landmarksduringa run,not all
of themnecessarilydistinct.Thenumberof distinct landmarks
in the environment, which is unknown, is denotedby M .
Formally, for the N elementmeasurementset Z = f Z i j1 �
i � N g, a partition T can be representedas T = f Sj j j 2
[1; M ]g, where eachSj is a set of measurementssuch that
Sj 1 \ Sj 2 = � 8j 1; j 2 2 [1; M ], j 1 6= j 2,

S M
j =1 Sj = Z , and

M � N is the numberof setsin the partition. In the context
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Fig. 3. Two topologieswith 6 observations each correspondingto set
partitions (a) with six landmarks (f 0g; f 1g; f 2g; f 3g; f 4g; f 5g) and (b)
with ®ve landmarks(f 0g; f 1; 5g; f 2g; f 3g; f 4g) wherethe secondand sixth
measurementare from the samelandmark.

of topologicalmapping,all membersof the set Sj represent
landmarkobservationsof the j th landmark.Thecardinalityof
the set of all possibletopologiesis identical to the number
of set partitions of the observation N -set. This number is
calledtheBell numberbN [41], de�ned asbN = 1

e

P 1
k=0

k N

k ! ,
and grows hyper-exponentiallywith N , for exampleb2 = 2,
b3 = 5 but b15 =1382958545. The combinatorialnatureof
this spacemakesexhaustive evaluationimpossiblefor all but
trivial environments.

IV. A GENERAL FRAMEWORK FOR INFERRING PTMS

The aim of inferencein the spaceof topologiesis to obtain
the posteriorprobability distribution on topologiesP(T jZ ).
All inferenceproceduresthatcomputesample-basedrepresen-
tationsof distributions requirethat evaluationof the sampled
distributionbepossible.In thissection,wedescribethegeneral
theory for evaluatingthe posteriorat any given topology.

Using BayesLaw on the posteriorP(T jZ ), we obtain

P (T jZ ) / P(Z jT )P(T) (1)

where P(T) is a prior on topologies and P(Z jT) is the
observation likelihood.

In this work, we assumethat the only observations we
possessare odometryand appearance.Note that this is not
a limitation of the framework, and other sensormeasure-
ments,such as laser range scans,can easily be taken into
consideration.We factor the set Z as Z = f O; Ag , where
O and A correspondto the set of odometryand appearance
measurementsrespectively. This allows us to rewrite (1) as

P(T j O; A) = kP(O; AjT)P(T)

= kP(OjT)P(AjT)P(T) (2)

wherek is the normalizationconstant,andwe have assumed
that the appearanceand odometry are conditionally inde-
pendentgiven the topology. We discussevaluation of the
appearancelikelihoodP(AjT), odometrylikelihoodP(OjT),
and the prior on topologiesP(T), in the following sections.

A. Evaluatingthe OdometryLikelihood

It is not possible to evaluate the odometry likelihood
P(OjT) without knowledgeof the landmarklocations.How-
ever, sincewe aredo not requirethe landmarklocationswhen



Fig. 4. TheBayesiannetwork (b) thatencodestheindependenceassumptions
for the appearancemeasurementsin the topology (a) given the true appear-
anceY = f y1 ; : : : ; y5g at all the landmark locations.The measurements
correspondingto different landmarksare independent.

inferring topologies,we integrate over the set of landmark
locationsX andcalculatethe marginal distribution P(OjT):

P (OjT) =
Z

X
P(OjX ; T)P(X jT) (3)

where P(OjX ; T) is the measurementmodel, a probability
densityonO givenX andT, andP(X jT) is a prior over land-
mark locations.Note that (3) makesno assumptionsaboutthe
actualform of X , andhence,is completelygeneral.Evaluation
of theodometrylikelihoodusing(3) requiresthespeci�cation
of a prior distribution P(X jT) over landmarklocationsin the
environment and a measurementmodel P(OjX ; T) for the
odometrygiven the landmarklocations.

B. Evaluatingthe AppearanceLikelihood

Similar to the caseof the odometrylikelihood,estimation
of the appearancelikelihood P(A j T), whereA = f ai j1 �
i � N g is the set of appearancemeasurements,is performed
by introducing the hidden parameterY = f yj j1 � j �
M g. This hidden parameterdenotesthe “ true appearance”
correspondingto eachlandmarkin thetopology. As we do not
needto computeY wheninferring topologies,we marginalize
over it so that

P(A j T) =
Z

Y
P(A j Y; T)P(Y j T) (4)

whereP(AjY; T) is the measurementmodelandP(Y j T) is
the prior on the appearance.We assumethat the appearance
of a landmarkis independentof all other landmarks,so that
eachyj is independentof all other yj 0. The prior P(Y j T)
canthusbe factoredinto a productof priors on the individual
yj .

P(Y j T) =
MY

j =1

P(yj ) (5)

The topologyT introducesa partition on the setof appear-
ancemeasurementsby determiningwhich “true appearance”
yj eachmeasurementai actually measures,i.e the partition
encodesthe correspondencebetweenthe set A and the set
Y . Also, given Y , the likelihood of the appearancecan

be factored into a product of likelihoods of the individual
appearanceinstances.This is illustrated using an example
topologyin Figure4, wheretheBayesiannetwork encodesthe
independenceassumptionsin the appearancemeasurements.
Hence,denotingthe j th set in the partition asSj , we rewrite
P(A j Y; T) as -

P(A j Y; T) =
MY

j =1

Y

a i 2 Sj

P(ai j yj ) (6)

where the dependenceon T is subsumedin the partition.
CombiningEquations(4), (5) and (6), we get the expression
for the appearancelikelihoodas

P(A j T) =
MY

j =1

Z

y j

P(yj )
Y

a i 2 Sj

P(ai j yj ) (7)

In theabove equation,P(yj ) is a prior on appearancein the
environment,and P(ai j yj ) is the appearancemeasurement
model. Evaluation of the appearancelikelihood requiresthe
speci�cation of thesetwo quantities.

C. Prior on Topologies

The prior on topologiesP(T), required to evaluate (2),
assignsa probability to topology T basedon the numberof
distinctlandmarksin T andthetotalnumberof measurements.
The prior is obtainedthrough the use of the ClassicalOc-
cupancy Distribution [22]. In the interestof continuity, the
derivation of the prior is deferredto AppendixA. We simply
statethe expressionfor the prior, given the total numberof
landmarksin the environmentL (including thosenot visited
by the robot)

P(T jL ) = k
L � N � L !
(L � M )!

(8)

whereN is thenumberof measurements,M is thenumberof
distinct landmarksin thetopologyT, andk is a normalization
constant.This prior distribution assignsequalprobabilityto all
topologiescontainingthe samenumberof landmarks.

Notethatthetotal numberof landmarksin theenvironment,
L , is not known. Hence,we assumea Poissonprior on L ,
giving P(L j� ) = � L e� �

L ! , and marginalize over L to get the
actualprior on topologies

P(T) =
X

L

P(T jL )P(L j� )

/ e� �
1X

L = M

L � N � � L

(L � M )!
(9)

where� is thePoissonparameterandthesummationreplaces
the integral asthe Poissondistribution is discrete.In practice,
the prior on L is a truncatedPoissondistribution since the
summationin (9) is only evaluatedfor a �nite numberof terms.

V. INFERRING PROBABIL ISTIC TOPOLOGICAL MAPS

USING MCMC

Theprevioussectionprovideda generaltheoryfor inferring
the posteriorover topologiesusing odometryand appearance
information.We now presenta concreteimplementationof the



Fig. 5. An exampleof a PTM giving the most probabletopologiesin the posteriordistribution obtainedusing MCMC sampling.The histogramgives the
probability of eachtopology.

Algorithm 1 The Metropolis-Hastingsalgorithm
1) Startwith a valid initial topologyTt ; theniterateoncefor each

desiredsample
2) Proposea new topology T

0

t using the proposal distribution
Q(T 0

t ; Tt )
3) Calculatethe acceptanceratio

a =
P(T 0

t jZ t )
P (Tt jZ t )

Q(Tt ; T 0
t )

Q(T 0
t ; Tt )

(10)

where Z t is the set of measurementsobserved up to and
including time t.

4) With probability p = min(1; a), acceptT 0
t and set Tt  T 0

t .
If rejectedwe keep the stateunchanged(i.e. return Tt as a
sample).

theorythatusestheMetropolis-Hastingsalgorithm[20], avery
generalMCMC method,for performingthe inference.Figure
5 depictsan exampleof the discreteposteriorover topologies
obtainedusingourMCMC-basedtechnique.All MCMC meth-
odswork by runninga Markov chainover thestatespacewith
the propertythat the chain ultimately convergesto the target
distribution of our interest.Once the chain has converged,
subsequentstatesvisited by the chain are consideredto be
samplesfrom thetargetdistribution.TheMarkov chainitself is
generatedusinga proposaldistribution that is usedto propose
the next state in the chain, a move in statespace,possibly
by conditioningon the currentstate.The Metropolis-Hastings
algorithmprovidesa techniquewherebytheMarkov chaincan
convergeto thetargetdistribution usingany arbitraryproposal
distribution, theonly importantrestrictionbeingthat thechain
be capableof reachingall the statesin the statespace.

The pseudo-codeto generatea sequenceof samplesfrom
the posterior distribution P(T jZ ) over topologiesT using
the Metropolis-Hastingsalgorithm is shown in Algorithm 1
(adaptedfrom [14]). In this casethestatespaceis thespaceof
all setpartitions,whereeachsetpartitionrepresentsa different
topologyof theenvironment.Intuitively, thealgorithmsamples
from the desiredprobability distribution P(T jZ ) by rejecting
a fraction of the moves generatedby a proposaldistribution
Q(T 0

t ; Tt ), whereTt is thecurrentstateandT 0
t is theproposed

state. The fraction of moves rejected is governed by the
acceptanceratio a given by (10), which is where most of
the computationtakesplace.Computingthe acceptanceratio,
and hence,samplingusing MCMC, requiresthe designof a
proposaldensityandevaluationof thetargetdensity, thedetails
of which arediscussedbelow.

Fig. 6. Illustration of the proposal- Given a topology (a) correspondingto
the set partition with N =5, M =4, the proposaldistribution can (b) perform
a merge step to proposea topology with a smaller number of landmarks
correspondingto a set partition with N =5, M =3 or (c) perform a split step
to proposea topologywith a greaternumberof landmarkscorrespondingto
a setpartition with N =M =5 or re-proposethe sametopology.

We use a simple split-merge proposal distribution that
operatesby proposingone of two moves,a split or a merge
with equal probability at each step. Given that the current
sampletopology hasM distinct landmarks,the next sample
is obtainedby splitting a set,to obtaina topologywith M + 1
landmarks,or merging two sets, to obtain a topology with
M � 1 landmarks.The proposalis illustratedin Figure6 for
a trivial environment.If the chosenmove is not possible,the
currenttopologyis re-proposed.An exampleof an impossible
move is a merge move on a topology containingonly one
landmark.

The merge move mergestwo randomlyselectedsetsin the
partition to producea new partition with one less set than
before. The probability of a merge is simply 1=NM where
NM is the number of possiblemerges and is equal to the
binomial coef�cient

� M
2

�
, (M > 1).

Thesplit movesplitsa randomlyselectedsetin thepartition
to producea new partition with one more set than before.
To calculatethe probability of a split move, let NS be the
numberof non-singletonsetsin the partition. Clearly, NS is
the numberof setsin the partition that can be split. Out of
theseNS sets,we pick a randomset R to split. The number
of possiblewaysto split R into two subsetsis givenby

� jR j
2

	
,

where
� n

m

	
denotesthe Stirling numberof the secondkind

that givesthe numberof possiblewaysto split a setof sizen
into m subsets,andis de�ned recursively as

� n
m

	 �=
� n � 1

m � 1

	
+

m
� n � 1

m

	
[41]. Combiningthe probability of selectingR and

the probability of splitting it, we obtainthe probability of the

split move aspsplit =
�

NS
� jR j

2

	 � � 1
.

The proposal distribution is summarizedin pseudo-code
format in Algorithm 2, whereQ is the proposaldistribution
andr = q(T 0! T )

q(T ! T 0) is theproposalratio,a partof theacceptance
ratio in Algorithm 1. Notethat this proposaldoesnot incorpo-



Algorithm 2 The ProposalDistribution
1) Selecta merge or a split with probability 0:5
2) Merge move:

� if T containsonly one set, re-proposeT 0 = T , hence
r = 1

� otherwiseselecttwo setsat random,sayR andS
a) T 0 = (T � f Rg � f Sg)[ f R[ Sg andQ(T ! T 0) =

1
N M

b) Q(T 0 ! T ) is obtainedfrom the reversecase3(b),

hencer = NM

�

NS �

j R � S j
2 ���

� 1
, whereNS is the

numberof possiblesplits in T 0

3) Split move:
� if T containsonly singleton sets, re-proposeT 0 = T ,

hencer = 1
� otherwiseselecta non-singletonsetU at randomfrom T

andsplit it into two setsR andS.
a) T 0 = (T � f Ug) [ f R; Sg and Q(T ! T 0) =

�

NS �

j U j
2 � �

� 1

b) Q(T 0 ! T ) is obtainedfrom the reversecase2(b),
hencer = N � 1

M NS �

j U j
2 �

, whereNM is the number
of possiblemergesin T 0

rate any domainknowledge,but usesonly the combinatorial
propertiesof setpartitionsto proposerandommoves.

In addition to proposing new moves in the space of
topologies,we alsoneedto evaluatethe posteriorprobability
P(T jZ ). This is doneasdescribedin SectionIV. Thespeci�-
cationof themeasurementmodelsandthedetailsof evaluating
the posteriorprobability using thesemodelsare given in the
following section.

VI . EVALUATING THE POSTERIOR DISTRIBUTION

We evaluate the posterior distribution, which is also the
MCMC target distribution, using the factoredBayesrule (2).
It is important to note that we do not needto calculatethe
normalizationconstantin (2) since the Metropolis-Hastings
algorithm requires only a ratio of the target distribution
evaluatedat two points, wherein the normalizationconstant
cancelsout.Theodometryandappearancemeasurementmod-
els requiredto evaluate(2) aredescribedbelow.

A. Evaluatingthe OdometryLikelihood

Evaluationof the odometrylikelihood is performedusing
(3)

P (OjT) =
Z

X
P(OjX ; T)P(X jT)

under the assumption,common in robotics literature, that
landmarklocationsandodometrymeasurementshave the 2D
form X = f l i = (x i ; yi )j1 � i � N g and O = f ok =
(xk ; yk ; � k )j1 � k � N � 1g respectively. This requires
the de�nition of a prior on the distribution of the landmark
locationsX conditionedon the topologyT, P(X jT).

We use a simple prior on landmarks that encodesour
assumptionthat landmarksdo not exist closetogetherin the
environment.If the topologyT placestwo distinct landmarks
l i 1 and l i 2 within a distanced of eachother, the negative log

Fig. 7. Cubic penaltyfunction (in this case,with a thresholddistanceof 3
meters)usedin the prior over landmarkdensity

Fig. 8. Illustrationof optimizationof theodometrylikelihood.Theobserved
odometryin (a) is transformedto the onein (b) becausethe topologyusedin
this case,(f 0; 4g; f 1g; f 2g; f 3g) , tries to placethe ®rst and last landmarks
at the samephysicallocation.

likelihoodcorrespondingto the two landmarksis givenby the
penaltyfunction

L (l i 1; l i 2; T ) = L (l i 2; l i 1; T ) =
�

f (d) d < D
0 d � D

(11)

whered is the Euclideandistancebetweenl i 1 and l i 2, D is
a thresholdvalue,called the “penalty radius”, and we de�ne
f (d) to be a cubic function asshown in Figure7. The cubic
functionis de�ned usingtwo parameters- thepenaltyradiusD
at which the function becomeszero,and the maximumvalue
of the function at the origin. The total probability P(X jT) of
landmarklocationsX given topologyT is thencalculatedas

� logP(X jT) =
X

1 � i1 < i2 � N
l i 1 =2 S(l i 2)

L (l i 1; l i 2) (12)

whereS(l i 2) denotesthe setcontainingl i 2.
TheodometrylikelihoodfunctionP(OjX ; T) in (3) encodes

the deviation betweenthe measuredodometryand the odom-
etry predictedby the topology and the landmark locations.
Intuitively, the topology T constrainssomemeasurementsas
beingfrom the samelocationeven thoughthe odometrymay
put theselocationsfar apart.The likelihoodfunctionaccounts



for thetwo typesof errors:thosefrom distortingtheodometry
andthosefrom not conformingto the topologyT. Hence,the
log-likelihoodfor the odometrycanbe written as

� logP(OjX ; T) =
�

kX � X O k
� O

� 2

+
X

S2 T

X

i 1;i 22 S

�
l i 1 � l i 2

� T

� 2

(13)

whereS is asetin thepartitioncorrespondingto T , � O and� T

arestandarddeviationsexplainedbelow, andX o is the setof
landmarklocationsobtainedfrom theodometrymeasurements.
The �rst term on the right hand side of (13) corresponds
to the error from the odometrydistortion while the second
term correspondsto the topology constraints.The standard
deviationsfor the odometryandtopologyconstraints,� O and
� T respectively, encodetheamountof errorthatwearewilling
to toleratein eachof thesequantities.

A simple example illustrating the constraintsis given in
Figure 8. In this example, the topology constrainsX o and
X 4 (the �rst andlast landmarks)to thesamelocationcausing
a distortion in the odometry. This resultsin the topology in
Figure8(b).

1) Numerical Evaluation of the Odometry Likelihood:
In some cases,it may be possible to evaluate the integral
in (3) analytically using the functional form of the log-
likelihood given in (13) and (12). If closedform evaluation
is not possible,it may still be possibleto use an analytical
approximationtechniquesuch as Laplace's method [55] to
evaluate(3).

However, in general,it is not possibleto useany form of
analytical evaluation to compute(3). Instead,we employ a
Monte Carlo approximation,using importancesampling[13]
to approximatethe integrandP(OjX ; T)P(X jT). Importance
samplingworks by generatingsamplesfrom a proposaldis-
tribution that is easy to samplefrom. Each sampleis then
weightedby the ratio of the targetdistribution to theproposal
distribution evaluatedat thesamplelocation.TheMonteCarlo
approximationis subsequentlyperformed by summing the
weighted samples.The primary condition on the proposal
distribution is that it shouldbenon-zeroat all locationswhere
the target distribution is non-zero. In addition, importance
sampling is ef�cient if the proposaldistribution is a close
approximationto the target distribution.

In our case, the importancesampling proposal distribu-
tion is obtainedfrom the odometrylog-likelihood (13). This
function is a lower bound on the log of the integrand,
log(P(OjX ; T)P(X jT)), sincethe prior term given by (12)
is never negative. Consequently, (13) canbe usedto obtaina
valid importancesamplingdistribution. We employ Laplace's
method to obtain a multivariate Gaussiandistribution from
� logP(OjX ; T), which is usedas the proposaldistribution.
This is achieved by computingthe maximumlikelihoodpath
X ? through a non-linear optimization of � logP(OjX ; T),
and creating a local Gaussianapproximation Q(X jO; T)
aroundX ?

X ? = argmax
X

(� logP(OjX ; T))

Q (X j O; T) =
1

p
j2� � j

e� 1
2 (X � X ? )T � � 1 (X � X ? )

where� is the covariancematrix relating to the curvatureof
 (X ) aroundX � . The distribution Q(X jO; T) is then used
as the proposaldistribution for the importancesampler.

In practice,we usethe Levenberg-Marquardt algorithm in
conjunctionwith a sparseQR solver to performthe optimiza-
tion describedabove. The Levenberg-Marquardt algorithm
requiresthe derivative of the objective function that is being
minimized,in this casethe function � logP(OjX ; T) in (13).
To computethe(sparse)JacobianH givenby H = @ (X )

@X , we
usean automaticdifferentiation(AD) framework. Automatic
differentiation(AD) is a techniquefor augmentingcomputer
programswith derivativecomputations.It exploits thefactthat
by applying the chain rule of differential calculusrepeatedly
to elementaryoperations,derivativesof arbitraryordercanbe
computedautomaticallyand accuratelyto working precision.
See[15] for moredetails.

Theodometrylikelihoodgivenby (3) is now evaluatedusing
the Monte Carlo approximation
Z

X
P(OjX ; T)P(X jT) �

1
N

NX

i =1

P(OjX ( i ) ; T )P(X ( i ) jT )
Q(X ( i ) jO; T)

(14)
where the X ( i ) are samplesobtained from the Gaussian
proposal distribution Q(X jO; T) and N is the number of
samples.

B. Evaluatingthe AppearanceLikelihood

Fourier signatures,which we use as appearancemeasure-
ments,arecomputedby calculatingthe1-D Fourier transform
of each row of the panoramicimage and storing only the
few coef�cients correspondingto thelower spatialfrequencies
[34]. While morepopulardimensionalityreductiontechniques
suchasPCA [23] exist, the drawbackof suchsystemsis the
needto further preprocessthe measurementimagesin order
to obtain rotationalinvariance.In contrast,the magnitudesof
Fouriercoef�cients in aFouriersignaturearerotation-invariant
sincepanoramicimagesareperiodic.Hence,a Fourier signa-
tureyieldsa low-dimensional,rotation-invariantrepresentation
of theimage.Weuseimagesobtainedfrom aneight-camerarig
mountedon a robot to producepanoramicimages.The eight
imagesobtainedat eachpoint in time are stitched together
automaticallyto form a 3600 view of the environment.

In our case,Fourier signaturesarecalculatedusinga mod-
i�cation of the proceduregiven in [33]. Firstly, a single row
image obtainedby averaging the rows of the input image
is calculatedand subsequently, the one-dimensionalFourier
transformof this imageis performed.This givesustheFourier
signatureof theimage.It is to benotedthatFouriersignatures
do not comprisea robust sourceof measurements,since the
measurementscontainmany falsepositives, in the sensethat
images from distinct physical locations often yield similar
Fourier signatures.This is due to perceptualaliasingand the
extremecompressionof the Fourier signature.However, they
have the advantageof being simple to computeand model.
Moreover, in conjunctionwith odometry, they still produce
goodresultsaswe demonstratein SectionVII.



Evaluationof the appearancelikelihoodis performedusing
(7). However, in this case,eachappearancemeasurementai is
a Fourier signaturevector given as ai = f ai 1; ai 2; : : : ; aiK g,
whereaik is the kth Fourier componentin the Fourier signa-
ture. Also, we assumea similar vector form for the hidden
appearancevariablesyi , so that yi = f yi 1; yi 2; : : : ; yiK g. We
canthenwrite (7) as

P(AjT) =
MY

j =1

Z

y j

P(yj 1; : : : ; yj K )�

Y

a i 2 Sj

P(ai 1; : : : ; aiK j yj 1; : : : ; yj K ) (15)

Clearly, the various frequency componentsof the Fourier
signatureareindependentgiventhecorrespondingappearance
variable,andhence,canbe factored,ascanbe the prior over
the hidden appearancevariables.Consequently, we modify
(15) to get the expressionfor the appearancelikelihoodas

P(A j T) =
MY

j =1

KY

k=1

Z

y j k

P(yj k )
Y

a i 2 Sj

P(aik j yj k ) (16)

We assumethemeasurementnoisein theFouriersignatures
to be Gaussiandistributed so that the model for appearance
instanceaik , belongingto the j th set Sj , is also a Gaussian
centeredaroundthe “true appearance”yj k with variance� 2

j k .
Sincewe do not know either of theseparameters,we further
model them hierarchicallyin a properBayesianmanner. Hi-
erarchicalpriors areplacedon � 2

j k andyj k : the prior on � 2
j k

beingan inversegammadistribution while the prior on yj k is
taken to be a Gaussiandistribution with mean� andvariance
� 2

j k

� . This particularchoiceof priorsalsoallows theintegration
in (16) to be performedanalytically. The appearancemodel
canthenbe summarizedas

aik �

N (yj k ; � 2
j k ) whereai 2 Sj

yj k �

N (�;
� 2

j k

�
) (17)

� 2
j k �

I G(� k ; � k )

whereI G denotesthe inversegammadistribution. Note that
while the value of � is generallychosenso that the prior on
yj k is vague,we usuallyhave someextra “world knowledge”
that canbe usedto set the valuesof the hyper-parameters� k

and � k . For example, if we expect the value of the Fourier
signatureto vary by only a small amountin theneighborhood
of a given location, the prior on � 2

j k should re�ect this
knowledgeby beingpeaked abouta speci�c value.

The generative model for Fourier signaturemeasurements
speci�ed by (17) is now used to compute the appearance
likelihood given by (16). In addition to integrating over yj k ,
we alsointegrateover thevariance� 2

j k aswe arenot interested
in its value.It follows that

P(A j T) =
MY

j =1

KY

k=1

Z

� 2
j k

I G(� k ; � k )�

Z

y j k

N (�;
� 2

j k

�
)
�
N (yj k ; � 2

j k )
� jSj j

(18)

Fig. 9. (a) Raw odometry(in meters)and (b) Groundtruth topology from
the ®rst experimentinvolving 9 observations

We prove in AppendixB that performingthe integrationover
yj k and� 2

j k givestheexpressionfor theappearancelikelihood
as

P(AjT) /
MY

j =1

CK
j

KY

k=1

�( 
 j k + 1)
�

� +
1
2

� j k

� � ( 
 j +1)

(19)

where

Cj = (� + jSj j) � 1
2

� j k = � (� ?
k � � )2 +

X

a i 2 Sj

�
aik � � ?

j k

� 2

� ?
j k =

�� +
P

a i 2 Sj
aik

� + jSj j


 j = � +
jSj j
2

+ 1

andconstantsthat do not affect the likelihoodratio have been
omitted.

The appearancemodel presentedabove is not speci�c to
Fourier signatures.Indeed,it is a generalpurposeclustering
modelthatassumesthatthedatato beclusteredaredistributed
as a mixture of Gaussianswith an unknown number of
components.A topology labelseachdata instanceas arising
out of one of the mixture components,wherethe numberof
mixture componentsis determinedby the topology.

C. Putting it Together

The odometryandappearancelikelihoodsandthe prior on
topologiesrequiredto computethe target distribution (2), are
given by (14), (19) and (9) respectively. We use this target
distribution to sampleusingAlgorithm 1 asexplainedbefore.

VI I . EXPERIMENTS AND RESULTS

Three setsof experimentswere performedto validate the
Probabilistic Topological Maps algorithm. All experiments
wereperformedusingan ATRV-Mini mountedwith an eight-
camerarig. The landmarksin the experimentswere selected
manually. In all cases,we initialized the samplerwith the
partition that assignedeachmeasurementto its own set. We
describethe experimentsandresultsbelow.

The �rst experimentwasconductedusinga relatively short
run of the robot. Nine landmark locations were observed
during therun of approximately15 meters.Theraw odometry
obtainedfrom the robot, labeledwith the landmarklocations,



Fig. 10. Changein probability masswith maximumpenaltyof the ®ve mostprobabletopologiesin the histogrammedposterior. The histogramat the end
of eachrow gives the probability valuesfor eachtopology in the row.

Fig. 11. Floorplanof experimentalareafor secondexperiment

and the ground-truthtopology are shown in Figure 9. Only
the odometrymeasurementswere usedin the experiment,no
appearanceinformation was provided to the algorithm. This
wasdoneby simply neglectingtheappearancelikelihoodterm
in (2). The penalty radius was set to 2.5 meters for this
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Fig. 12. Landmarklocations(in meters)plottedusingodometryfor second
experiment

experiment.
Figure 10 shows the evolution of the MCMC samplerfor

different valuesof the maximum penalty parameter. In our
algorithm, it is the penalty term that facilitates merging of
nodesin the map that are the same.Without the penalty, the
systemhasno incentive to move towarda topologywith lesser
numberof nodesas this increasesthe odometryerror. Table
10(a) illustrates this case.It can be seenthat the topology
that is closestto the raw odometrydataand also having the



maximumpossiblenodesgetsthemaximumprobabilitymass.
For the rest of the caseswith maximum penaltiesequal to
50, 100, and 150 respectively, the most likely solution is the
topology indicatedby the raw odometry. The large error in
odometrymakesthegroundtruth topologylesslikely in these
cases.The ground truth topology is the second-mostlikely
topology for maximum penalty values100 and 150. This is
becauseas the penalty is increasedthe effect of odometry
is diminishedand the ground truth topology gains more of
the probability mass.However, a very large penaltyswamps
odometrydataandmakesabsurdtopologiesmore likely.

The secondexperimentdemonstratesthe usefulnessof ap-
pearancein disambiguatingnoisy odometry measurements.
Theexperimentwasconductedin anindoorof�ce environment
where the robot traveled along the corridors in a run of
approximately200 metersand observed nine landmarks.A
�oorplan of the experimental area is shown in Figure 11.
The landmarklocationsobtainedusing odometryare shown
in Figure 12. As in the �rst experiment,the � ve most likely
topologiesfrom the target distribution were obtainedusing
only odometrymeasurements.A penaltyradiusof 20 meters
and a maximum penalty of 100 were used to obtain the
topologies,which are shown in Figure 13. As before, the
ground truth topology receives only a small probability due
to noisy odometry.

We now repeat the experiment,but this time also using
the appearancemeasurements,i.e. the Fourier signaturesof
the panoramicimagesobtainedfrom the landmarklocations,
in addition to the odometry. The �rst � ve frequenciesof the
Fourier signatureswere usedfor this purpose.The valuesof
the variancehyper-parametersin the appearancemodel were
set so that the prior over the variance is centeredat 500
with a varianceof 50. The � ve most likely topologies in
the resulting probability histogramare shown in Figure 14.
Thegroundtruth topologygetsthemajority of theprobability
mass.This experimentillustratesthe useof appearancemea-
surementsto disambiguatenoisy odometrydata.Additionally,
it demonstratesthat the Bayesianmodel usedherein re�nes
the posteriorover topologiesgiven moredata.

The third experimentwas conductedover an entire �oor
of a building and was complex in the sensethat the robot
run containedtwo loops, a bigger loop enclosinga smaller
loop. Twelve landmarkswere observed by the robot during
the run, shown overlaid on a �oorplan of the experimental
areain Figure 16. The odometryof the robot with the laser
plottedon top is shown in Figure15. A penaltyradiusof 3.5
metersand a maximum penalty value of 100 were used in
this experiment.Using only the odometrymeasurements,the
groundtruth topology did appearin the � ve most topologies
in thePTM, but receiveda low probabilitymass.Theseresults
aregiven in Figure17.

When appearanceis also included, the results shift dra-
matically since there is little perceptualaliasing in this en-
vironment.Only two topologiesappearin the PTM with the
ground truth receiving almost all the probability mass.This
experimentillustratesthefactthatwhenreliablemeasurements
are available, the PTM computedby our approachis sharply
peaked andconcentratedon very few topologies.

Fig. 15. Odometryof the robot plottedwith the lasermeasurementsfor the
third experiment.

Fig. 16. Robotpathoverlaid on a ¯oorplanof the environmentfor the third
experiment.

VII I . CONCLUSIONS

In the �rst experiment, even though the environment is
small, noisy odometry results in the ground truth topology
not receiving the highest probability mass. If a maximum
likelihood approachwere usedin this case,the result would
just be an incorrect topology. However, using a Bayesian
methodologyto computetheposteriorover topologiesyieldsa
robust result for the given data.Our techniqueyields the sys-
tematic,completeanswerfor thegivendata.Subsequently, the
resultingposteriorcan be post-processed,if necessary, using
an application-speci�ctechniqueto yield a single topology.
On the other hand,computationssuchas planning, topolog-
ical localization and metric map creationcan be performed
using the full posteriorwithout rejectingany possibility. For
example, plans can be computed on multiple topological
mapssampledfrom theposteriordistribution; eachplanbeing
given a con�dence rating proportional to the probability of
the sampledtopology. In contrastto maximum-likelihood or
othertruncatedapproaches,our techniqueallowssuchgeneral-



(a) (b)

Fig. 13. The topologieswith highestposteriorprobability massfor the secondexperimentusingonly odometry(a) an incorrecttopology receives 91% of
the probability masswhile the groundtruth topology(b) receives 6%, (c), (d) and(e) receive 0.9%,0.8% and0.7% respectively.

Fig. 14. Topologieswith highestposteriorprobabilitymassfor thesecondexperimentusingodometryand appearance(a) Thegroundtruth topologyreceives
94% of the probability masswhile (b), (c), (d) and(e) receive 3.2%,1.2%,0.3% and0.3% of the probability massrespectively.

Fig. 17. Topologieswith highestposteriorprobability massfor the third experimentusing only odometry. (a) receives 43% of the probability masswhile
(b), (c), (d) and(e) receive 14%, 7.3%,3.9% and2.8% of the probability massrespectively. The groundtruth topology is (c).

purpose,application-speci�cuseof the output.
The�rst experimentalsohighlightsthesensitivity of the in-

ferenceto thepenaltyparameters.As pointedout by a referee,
this problem is a fundamentalone arising from the attempt
to combinetwo incommensurablemeasuresof goodness:one
beingthecontinuousprobabilitymassderivedfrom odometry,
andtheotherbeinga discretepreferencefor a smallernumber
of distinct places.While we have usedthe prior on landmark
locationsto addressthis issuein this work, this is by no means
the optimal solution to the problem.

The secondexperiment illustrates the power of using a
Bayesianapproachin the sensethat goodresultsareobtained
evenwith noisydata,whena largeamountof datais available.
Initially, due to odometrydrift in the large environment the

information available to the algorithm is limited, and hence,
an incorrecttopologygetsa large majority of the probability
mass.However, the inclusion of appearancemeasurements,
which are themselves noisy, in the inference results in a
posteriorin which the ground-truthtopology is highly prob-
able.Note, however, that this doesnot imply that the second
posterior is better in any sensesince there exists only one
posterior for a given set of measurements.The experiment
merely af�rms the fact that use of more data from varied
sourcesimproves Bayesianinferenceand yields more robust
results.In particular, noisy odometryand aliasedappearance
may combine to prevent the ground truth topology from
becomingthemaximumaposteriori(MAP) topologyevenafter
a long exploratorysequence.



Fig. 18. The two topologiesconstitutingthe PTM whenboth odometryand
appearancemeasurementsare used.The ground truth topology on the left
receives 99.5%of the probability mass.

Theseconclusionsare con�rmed by the third experiment,
which in addition demonstratesthat with reliable measure-
ments the posterior becomessharply peaked and the PTM
approachdefaults to a mappingmethodthat �nds a single,
maximumlikelihoodtopology.

IX. DISCUSSION

We presentedthe novel idea of computingdiscreteprob-
ability densitiesover the spaceof all possible topological
maps.TheProbabilisticTopologicalMapsarecomputedusing
Markov Chain Monte Carlo samplingover set partitionsthat
are used to encodethe topologies.PTMs are a systematic
solution to the perceptualaliasing problem in topological
mappingand provide an optimal estimationof the posterior
distribution over topologiesfor the given measurements.We
provide a generalframework for estimatingthe posteriorover
thespaceof topologiesandtwo speci�c modelsfor computing
measurementlikelihood, one using odometryand the other
usingappearance.The odometrylikelihoodcomputationuses
a simple spatial prior on landmarkdistribution in the form
of a cubic penalty function that disallows proximity among
landmarks.Theappearancemodelusedin this work dealswith
Fourier signaturesof panoramicimages.The model clusters
similar appearancemeasurementsas coming from the same
spatial location. Experimentalresults on environmentswith
variedsizesdemonstratethe applicability of PTM.

One advantageof our approachis that an estimate of
topology is possibleeven if only a meageramount of in-
formation is available. It is not the purposeof this work to
�nd the best topological map, but to computethe posterior
probabilitydensityover topologicalspaceasper theBayesian
approach.We have shown this capability in experimentsthat
useonly odometryfrom the robot to createdistributions that
can either correspondto the odometryor the prior (in this
casethe spatial penalty function) as parametersare varied.
Appearancemodeling has largely been used in this work
as a disambiguationmechanismfor odometry, i.e. by either

increasingor decreasingthe evidence for the odometry. Of
course,sophisticatedappearancemodelsthat aremore robust
to perceptualaliasing could be used. However, our use of
low resolution Fourier signaturesdemonstratesthe ability
of our systemto cope with environmentscontainingbarely
distinguishablelandmarks.

ThePTM algorithmis a majorsteptowardsacknowledging
the ideathat the ideal mappingalgorithm,capableof produc-
ing anaccuratemapin any environmentusingjust theavailable
measurements,may not exist. Instead,the mappingalgorithm
should be able to reasonabout and �ag any uncertaintyit
might have aboutthe mapsit is generating.This is precisely
whatPTMsaccomplish.PTMscouldalsobeusedasthebasis
to createa posteriorover all possiblemetric mapsusing the
approachgiven in [35].

We haveshown thattheinferencespacein whichwe operate
is combinatorial.However, this doesnot causeproblemsin
scalability sincein real environmentsthe measurementspro-
vide enoughinformationso that the posterioris concentrated
on a few topologies.Even if all the landmarksin the environ-
mentareperfectlyaliased,inferencebasedon only odometry
still leadsto a peaked posterior[43]. Only in thepathological
caseof very poor odometryand perfectlyaliasedappearance
do we encounterproblemsof scalability. However, in this
extreme case, the measurementsdo not provide suf�cient
informationandhence,the algorithmcanhardly be blamed.

Currently, thePTM algorithmrequires� ve parametersto be
chosenby theuser. Thesearethepenaltyradiusandmaximum
penalty values for the odometry likelihood, and the � and
� variancehyper-parametersand the number of frequency
componentsfor theappearancelikelihood.The penaltyvalues
dependon thesizeandscaleof theenvironmentbeingmapped
andneedto be empirically determinedfor eachenvironment.
This is also the casefor the variancehyper-priors,which en-
codethevariationin appearancevaluesfrom thesamelocation
in theenvironment.Changesin lighting, cameradistortionand
other measurementnoisemay make this variation large. It is
our experiencethat thereis rarely needto usemore than the
�rst � ve frequency componentsin theappearancemodel.This
is becausethe higher frequency componentsmainly contain
noise,which we do not seekto model. It is also to be noted
that while we useFourier signaturesin this work, any other
rotation-invariant dimensionalityreduction techniquecan be
usedinstead.

While we only provide likelihoodmodelsfor odometryand
appearance,a simple extensionto laserdatais also possible.
If two lasers are used to gather 3600 laser scans at the
landmark locations,the likelihood of two scansbeing from
thesamelocationcanbe computedusingscanmatching.This
likelihood,extendedto multiple scancomparison,canbeused
to sampleover partitions.

A problemwith thecurrentsetupis theuseof a singlevalue
for thepenaltyradius.This cancausepoorperformanceif the
distribution of landmarksvaries acrossthe environment, for
example,if most of the landmarksoccur in a closely-spaced
groupbut theremainderarespreadwideapart.Findingclusters
at different scalesis a well-researchedproblem in machine
learning and it is future work to apply those techniquesto



automatethe processof settingthe penaltyradius.
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APPENDIX A

To derive the expressionfor theprior over topologiesgiven
in (8), we notethat thesetupcanbeconvertedinto anurn-ball
modelby consideringlandmarksto beurnsandmeasurements
to be balls, yielding L urns and N balls. We now show that
the urn-ball modelyields a prior over setpartitions,which is
also a prior over topologiesdue to the isomorphismbetween
topologiesandsetpartitions.

A setpartitionon themeasurementsis createdby randomly
addingthe balls to the urns, where it is assumedthat a ball
is equally likely to land in any urn (i.e. there is a uniform
distribution on the urns). The distribution on the numberof
occupiedurns, after addingall the N balls randomly to the
urns,is givenby theClassicalOccupancy Distribution [22] as

P(M ) =
�

L
M

�
L � N M !

�
N
M

�
(20)

where
� N

M

	
is the Stirling numberof the secondkind.

The number of occupiedurns after adding all the balls
correspondsto the numberof distinct landmarksin the topol-
ogy, while the speci�c allocation of balls to urns (called an
allocationvector)correspondsto thetopologyitself. Also, (20)
assignsan equal probability to all ball allocationswith the
samenumberof occupiedurns.Hence,we can interpret(20)
as

P(M ) / P(allocationvectorwith M occupiedurns)�

No. of allocationvectorswith M occupiedurns (21)

The numberof allocation vectorswith M occupiedurns is
equal to the numberof partitionsof the set of balls into M
subsets.This is preciselythe Stirling numberof the second
kind

� N
M

	
. Combining this observation with (20) and (21)

yields

P(allocationwith M occupiedurns) /
�

L
M

�
L � N M !

As mentionedpreviously, the probability of an allocation
vector correspondsto the probability of a topology. Hence,
the prior probability of a topologyT with M landmarksis

P(T jL ) = k
L � N � L !
(L � M )!

which is theprior in (8). Specifyinga differentdistribution on
the allocationof balls to urns, ratherthan the uniform distri-
bution assumedabove, yields differentpriors on topologies.

APPENDIX B

To obtaintheexpressionfor theappearancelikelihoodgiven
in (19), considerthe integral in (7) which is theprobabilityof
a set in the topology taking into accountonly one frequency
component

P(S) =
Z

� 2
j k ;y j k

P(� 2
j k )P(yj k j� 2

j k )
Y

a i 2 Sj

P(aik j yj k ; � 2
j k )

Plugging in the functional forms of the distributions de�ned
in the model (17), we get

P(S) = K j

Z

� 2
j k

�
� 2

j k

� � A j e
� �

� 2
j k

Z

y j k

e
� 1

2� 2
j k

B j k

where

K j =
� �

�( � )
�

1
2

(2� )
j S j j +1

2

A j = � +
jSj j
2

+
3
2

B j k = � (yj k � � )2 +
X

a i 2 Sj

(aik � yj k )2

Performingthe inner integration,we get

P(S) = K 0
Z

� 2
j k

�
� 2

j k

� � 
 j e
� 1

� 2
j k

(� + 1
2 � j k )

(22)

where

K 0 =
1

(2� )
j S j j

2

� �

�( � )

�
�

� + jSj j

� 1
2

� j k = � (� ? � � )2 +
X

a i 2 Sj

�
aik � � ?

j k

� 2

� ?
j k =

�� +
P

a i 2 Sj
aik

� + jSj j


 j = � +
jSj j
2

+ 1

We now provide here a useful de�nition of the Gamma
function

Z 1

0
e� �t t 
 dt =

�( 
 + 1)
� ( 
 +1)

usingwhich (22) canbe integrated(notethat t correspondsto
� � 2

j k ) to yield

P(S) = K 0 �( 
 j + 1)
�

� + 1
2 � j k

	 ( 
 j +1)

whence(19) follows.
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