
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2011 391

Online Sparse Gaussian Process Regression
and Its Applications

Ananth Ranganathan, Ming-Hsuan Yang, Senior Member, IEEE, and Jeffrey Ho

Abstract—We present a new Gaussian process (GP) infer-
ence algorithm, called online sparse matrix Gaussian processes
(OSMGP), and demonstrate its merits by applying it to the prob-
lems of head pose estimation and visual tracking. The OSMGP is
based upon the observation that for kernels with local support, the
Gram matrix is typically sparse. Maintaining and updating the
sparse Cholesky factor of the Gram matrix can be done efficiently
using Givens rotations. This leads to an exact, online algorithm
whose update time scales linearly with the size of the Gram
matrix. Further, we provide a method for constant time operation
of the OSMGP using matrix downdates. The downdates maintain
the Cholesky factor at a constant size by removing certain rows
and columns corresponding to discarded training examples. We
demonstrate that, using these matrix downdates, online hyperpa-
rameter estimation can be included at cost linear in the number of
total training examples. We describe a robust appearance-based
head pose estimation system based upon the OSMGP. Numerous
experiments and comparisons with existing methods using a large
dataset system demonstrate the efficiency and accuracy of our
system. Further, to showcase the applicability of OSMGP to a wide
variety of problems, we also describe a regression-based visual
tracking method. Experiments show that our OSMGP algorithm
generalizes well using online learning.

Index Terms—Gaussian process, matrix algebra, online algo-
rithm, pose estimation, visual tracking.

I. INTRODUCTION

G AUSSIAN PROCESSES (GPs) [37] are probabilistic
kernel machines, which have been demonstrated to

be practical Bayesian tools applicable to a wide variety of
real-world statistical learning problems. GPs are a nonpara-
metric estimation method since they operate in the function
space and the parameters learned are a mean function and a
covariance function. Further, unlike other kernel machines
such as support vector machines (SVMs), GPs can quantify
the uncertainty of predictions due to their explicit probabilistic
formulation.

Manuscript received March 26, 2010; revised July 19, 2010; accepted July
23, 2010. Date of publication August 16, 2010; date of current version January
14, 2011. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Oscar C. Au.

A. Ranganathan is with Honda Research Institute, Mountain View, CA 94041
USA (e-mail: aranganathan@honda-ri.com).

M.-H. Yang is with Department of Electrical Engineering and Com-
puter Science, University of California, Merced, CA 95344 USA (e-mail:
mhyang@ucmerced.edu).

J. Ho is with the Department of Computer Information Science and
Engineering, University of Florida, Gainesville, FL 32607 USA (e-mail:
jho@cise.ufl.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2010.2066984

However, despite their advantages, GPs have not been as pop-
ular as SVMs due to their computational limitations. GPs are
inherently dense representations in that all the training data is
required for making predictions. The size of covariance func-
tion, represented as a kernel matrix evaluated over the training
data, increases quadratically with the size of training set. Fur-
ther, the Bayesian posterior update to incorporate data is also
computationally cumbersome and precludes the online use of a
simple GP implementation.

A number of approximation methods have been proposed
that attempt to overcome this limitation of GPs. Many of these
methods sparsify the GP by learning basis vectors or an active
set of points on which the prediction is conditioned. Hence, the
rank of the kernel matrix is kept constant. Other methods make
structural assumptions, such as assuming the kernel matrix to
be block diagonal, whence the GP can be decomposed into a
number of smaller GPs [45].

In this paper, we describe a new Gaussian process regres-
sion algorithm, called online sparse matrix Gaussian process
(OSMGP) regression, that is exact and allows fast online up-
dates in linear time for kernel functions with local support. This
combination of exact inference and fast online updates is a novel
contribution to the GP literature. The structural assumption of
local kernel support made in this case is much weaker than many
other algorithms in the literature [36].

We show that when the Gram matrix is sparse, as is the case
when kernels with local support are used, an efficient repre-
sentation is to maintain and update the Cholesky factor of the
Gram matrix instead of the matrix itself. During online learning,
when a new point is added to the training sequence, this intro-
duces a new row and column into the Gram matrix. Instead of
recomputing the Cholesky factor for the matrix, which would
be expensive, we use Givens rotations to incrementally update
it. Givens rotations are guaranteed to update the factorization in

time for a sparse matrix, where the Gram matrix has size
, but can be much faster in practice.

We demonstrate that even though the Cholesky factor of the
Gram matrix may become dense due to repeated applications of
Givens rotations as points are added to the training set, this can
be overcome through the use of variable reordering, which re-
stores sparsity of the matrix. If the hyperparameters of the GP
are learned offline and not changed during online execution, the
overall algorithm is linear. However, if these are learned auto-
matically using a maximum likelihood method, this introduces
a periodic quadratic update when the optimization is performed
and the complete Gram matrix recomputed.

In addition, we propose the use of matrix downdating with
hyperbolic rotations to also learn the hyperparameters of the
GP in constant time. Hyperbolic rotations are used to incremen-

1057-7149/$26.00 © 2011 IEEE

392 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2011

tally recompute a matrix factorization when a row and a column
from the matrix are removed. This operation can be performed
in time similar to Givens rotations. Downdating enables
the Gram matrix to be maintained at a constant size by removing
a training point from the training set whenever a new point is
added, so that the size of the training set does not change. Hence,
recomputing the Gram matrix after relearning the hyperparam-
eters can be done in constant time.

We also provide an alternative, and potentially faster, method
for implementing the matrix updates and downdates using
in-place modification of the Cholesky factor. The method
utilizes the elimination tree of the updated matrix to first com-
pute its sparsity pattern. Subsequently, only these entries are
computed and no calculations are wasted on the zero entries.

The proposed OSMGP algorithm is applied to head pose esti-
mation and visual tracking problems. In particular, for head pose
estimation, we use a dataset that is both comprehensive and ex-
haustive, containing 17 people and over 30 000 test images with
ground-truth. Extensive comparisons with the state of the art
show the accuracy, robustness and generality of our pose esti-
mation system. For the tracking problem, we use publicly avail-
able datasets and demonstrate that the accuracy of the regression
tracker is comparable to leading methods in the literature.

II. GAUSSIAN PROCESS REGRESSION

A Gaussian Process is a distribution over the space of func-
tions where any subset of which has a Gaussian distribution.
GPs can be viewed as probabilistic kernel machines and, hence,
can provide not only a mean value prediction but also the uncer-
tainty measured in terms of standard deviation for a test sample.
A large standard deviation signals the absence of any training
data in the neighborhood of the test sample, and provides an
indication of poor generalization. A Gaussian Process is com-
pletely defined by a mean function and a covariance func-
tion . A random function distributed according to
a GP is written as .

The GP is transformed into a probabilistic kernel machine if
we take the covariance function to be a semipositive definite
Mercer kernel, such that the covariance between points and

is given by .
For performing regression, we assume the availability of

training inputs and corresponding outputs
. The covariance function of the GP is then given by the
Gram matrix . Typically, the kernel func-

tion has a number of parameters , which are also called the
hyperparameters of the GP, that have to be learned using the
training set. For example, for the Radial Basis Function (RBF)
kernel given as , the
hyperparameters are . Hyperparameter learning is
usually done by maximizing the marginal log-likelihood

(1)

where is the identity matrix of same dimensions as , and is
the standard deviation of additive Gaussian noise. This learning
step is performed offline since it involves inverting a potentially
large Gram matrix.

The regression-based prediction for a test point is com-
puted by the conditional distribution on the test output given the
training data and the test input. This is again a Gaussian distri-
bution with the predictive mean
and covariance given by

(2)

where .
The GP regression algorithm, as described previously, is not

useful for applications with large datasets since it does not scale
with the number of data points. The time complexity for training
is by (1) as it involves inversion of the Gram matrix.
This rules out the straightforward use of GPs in an incremental
fashion. The runtime prediction given by (2) is, however, only

for computing the mean prediction but for com-
puting the variance, assuming that the inverse Gram matrix has
been stored from the training phase and that it does not change
during runtime. A comprehensive reference for GPs and their
use in classification and regression tasks can be found in [37].

Many instances of modifications to the GP algorithm are
available that overcome this hurdle to online computation
through approximations that reduce the complexity of the
representation. A number of approximation schemes are based
upon the observation that very few training points contribute
to the bulk of learned GP. Hence, the prediction can be con-
ditioned on just this subset of points, e.g., algorithms with
inducing variables [36], basis vectors [8], or active set [42].

Various sparse GP schemes have been proposed that differ
in the additional assumptions they make about the form of the
conditional distribution of the training data given these basis
vectors. The methods of Csato and Opper [8], and Seeger [40]
maximize the likelihood of training data with projection onto
the basis set. On the other hand, the method of Snelson and
Ghahramani [42] assumes that the likelihood of training training
data depends only upon the basis set and a diagonal covariance
matrix. Finally, if the covariance matrix shown previously has
a block diagonal structure, it yields something similar to the
Bayesian committee machine [45]. A unifying synthesis of these
and other sparse GP methods is presented in [36].

Our OSMGP algorithm make a structural assumption at a
lower level than all these methods since the assumption is not
about the form of the conditional distribution and likelihood, but
about the kernel function itself. The compactness of the kernel
function results in a sparse kernel matrix enabling fast compu-
tation. If the number of active points is and the number of
training points is , the methods mentioned previously reduce
the complexity of updating the GP to from the initial

. In contrast, the time complexity of OSMGPs is
per training point without any approximations, albeit for the
special case of compact kernels. This still translates to a
batch runtime, which is worse than active set methods, but we
also provide approximations that enable constant runtime per
training point.

We now present Online Sparse Matrix Gaussian Processes
that can perform exact incremental updates to the GP in
time for kernel functions with local support.

RANGANATHAN et al.: ONLINE SPARSE GAUSSIAN PROCESS REGRESSION AND ITS APPLICATIONS 393

III. ONLINE SPARSE MATRIX GAUSSIAN PROCESSES

The proposed OSMGP algorithm works under the assump-
tion that the covariance matrix of the GP is sparse. The use of
kernel functions having local support results in most of the en-
tries in the Gram matrix being close to zero since the kernel
decays rapidly as the distance between the vectors being evalu-
ated increases. Many commonly used infinite-dimensional ker-
nels have local support, a case in the point being the widely
used radial basis function (RBF), also known as the Gaussian or
squared exponential kernel. This allows the use of sparse matrix
algorithms that can perform online updates in linear time and are
also exact, in contrast to the existing sparse GP algorithms.

To ensure the sparsity of the covariance matrix, we use com-
pactified kernel functions [19]. This is because although kernels
such as the RBF may produce a covariance matrix with many
small entries, the entries in the matrix should be exactly zero for
sparse matrix algorithms to be applicable. While thresholding
the entries of the covariance matrix may seem the most straight-
forward way to obtain a sparse matrix, this may result in the ma-
trix not being positive definite. Compactifying the kernel func-
tion, i.e., modifying the kernel function to get one with com-
pact support, ensures a positive definite matrix without compro-
mising on the other characteristics of the kernel. For example,
the RBF kernel can be compactified as

(3)

where and are the RBF kernel parameters, defines the com-
pact region over which the kernel has support, and is an odd
number set to either or where is the dimensionality
of the input. This modified kernel can be shown to be positive
definite [19].

The main difference between the OSMGP and existing GP
algorithms is the representation of the covariance matrix as a
sparse Cholesky factor. This is possible because the Cholesky
factor of a sparse matrix is also sparse for some reordering of
the variables. In the following discussion, we will take the upper
triangular Cholesky factor to be the quantity that is maintained
and updated.

A. GP Updates Using Kullback-Leibler Divergence

At each step during online learning of the GP, the proposed
algorithm is presented with a training pair that is used to update
the existing model. The GP posterior is computed by taking into
account the training output. Assuming at time , the model is
given by , it is updated upon receiving the training output

using Bayes law as where
is the measurement model.

Following Csato and Opper [8], we find the GP closest to the
true posterior in the Kullback-Leibler divergence sense. This
is done through moment matching using the parameterization
lemma of [8]. Subsequently, we get the updated GP as

(4)

where denotes the expectation at time , and
. The update variables and

are given as

(5)

Updating the GP model using (4) involves a time update
for the mean and an update for the covariance that is potentially

. Here is the number of training samples presented,
thus, far to the algorithm. However, this is a rank one update
to a sparse matrix where the dimensions of the matrix increase
by one during this update.

In the context of OSMGPs, the corresponding update to the
Cholesky factor can be split into the rank one update to the orig-
inal factor and the addition of an extra row and column. The rank
one update can be done in time through the use of Givens
rotations described in Section III-B.

To show the effect of row and column addition at an arbitrary
location on the Cholesky factor, consider the original matrix

(6)

where the submatrices and are symmetric. We now
add a row and column as

(7)

where is a scalar. We assume the lower triangular Cholesky
factor of to be of the form

(8)

Then the new updated Cholesky factor of is [11]

(9)

where only the elements with bars on them are modified and are
given by

(10)

(11)

(12)

(13)

In the previous set of equations, the time complexity of the first
three is clearly as they involve sparse back-substitution
and matrix–vector multiplications, respectively. The last one
(13) is a downdating operation where a rank one matrix is sub-
tracted from the input matrix whose Cholesky factor needs to be
updated. The downdating procedure is described in Section V,
which also shows that this too is in time. Hence, the overall

394 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2011

Fig. 1. Using a Givens rotation as a step in transforming a general matrix
into upper triangular form. The ��� ��th entry, marked “x” here, is eliminated,
changing some of the entries in the �th and �th rows marked in red (dark), de-
pending upon sparsity.

GP update, consisting of updates to the Cholesky factor re-
sulting from adding a rank one matrix to the covariance matrix
followed by the addition of a row and column, can also be ac-
complished in time.

B. Givens Rotations for Incremental Covariance Matrix
Update

A standard approach to perform efficient, incremental
Cholesky factorization uses Givens rotations [16] to zero out
the entries below the diagonal, one at a time. To zero out the

entry, of a matrix , we apply the Givens rotation

(14)

to rows and , with , which represents a rotation in a 2-D
subspace of the states. The parameter is chosen so that ,
the entry of the matrix, becomes 0

if

if

otherwise

where and . Fig. 1 shows how a Givens rotation
can be applied to a matrix which is triangular but for one
entry. Note that the single Givens rotation does not ensure that
the resulting matrix is triangular since the operation may give
nonzero values to other elements to the right of in the th and
th rows, shown in red in Fig. 1.

After all the nonzero entries below the diagonal are zeroed
out by application of Givens rotations, the upper triangular en-
tries contain the new Cholesky factor. Note that a sparse matrix
results in a sparse Cholesky factor, at least for an appropriate
variable ordering.

For rank one updates to the Cholesky factor, as described in
Section III-A, if the update vector is sparse, as is true in our case,
the number of nonzero entries introduced are only a few, and it
can be shown that zeroing out the offending entries results in a

time update. However, if the update is not sparse, the time
required increases to .

As an example, Fig. 2 shows the entries in a matrix of size
500 500 that change value upon updating the factorization
after adding a row and a column. The time complexity of of
this algorithm is if the whole matrix needs to be recom-
puted. However, only a small number of entries are recomputed
in practice.

Fig. 2. Updating a sparse Cholesky factorization after adding a row and column
is ���� in time using Givens rotations for a � � � matrix but is often much
faster in practice. In the previously shown sparsity pattern of Cholesky factor
(nonzero entries are marked in blue or red), entries whose values have changed
after the update are shown in red and unchanged entries are shown in blue. In
this 500� 500 matrix, only about 1 500 entries are modified.

IV. PERIODIC VARIABLE REORDERING AND

HYPERPARAMETER OPTIMIZATION

While the previous sections deals only with GP update, the
need to periodically learn the GP hyperparameters and maintain
the sparsity of the Cholesky factor of the Gram matrix can cause
inefficiencies. We address these issues in this section.

First, while the parameters can be learned offline using an ini-
tial training set, this makes the GP less responsive to changes in
the test set during runtime. However, once new hyperparame-
ters are available, the covariance matrix has to be recomputed
completely and refactorized using a batch Cholesky decompo-
sition. This operation could take time in theory but is
closer to time in practice if sparse Cholesky decomposi-
tion methods are used [23].

Second, the runtime of the OSMGP depends crucially upon
the sparsity of the Gram matrix. However, as Givens rotations
are incrementally performed to update the GP, fill-in can occur
in the Gram matrix. Fill-in is defined as nonzero entries beyond
the sparsity pattern of the Gram matrix, i.e., entries that are zero
in the Gram matrix become nonzero in the Cholesky factor. This
occurs because the Cholesky factor of a sparse matrix is guar-
anteed to be sparse for some variable orderings but not for all of
them.

We avoid fill-in by variable reordering, a technique well
known in the linear algebra community. This involves using a
heuristic to efficiently find a good column ordering. The order
of the columns (and rows) in the Gram matrix influences the
variable elimination order and, therefore, also the resulting
number of entries in the Cholesky factor. While obtaining the
best column variable ordering is NP hard, efficient heuristics
such as the column approximate minimum degree (COLAMD)
ordering [10] and nested dissection [24] perform well in
practice. The Cholesky factor after applying the COLAMD
ordering, for instance, shows negligible fill-in, as can be seen
in Fig. 3. Reordering the variables also needs a refactorization
of the Gram matrix with its attendant higher complexity.

We propose fast incremental updates with periodic variable
reordering and hyperparameter optimization using (1), where

RANGANATHAN et al.: ONLINE SPARSE GAUSSIAN PROCESS REGRESSION AND ITS APPLICATIONS 395

Fig. 3. Sparsity pattern of the Cholesky factor (nonzero entries marked in blue)
for factorization without reordering (left), and using COLAMD reordering
(right). The reordered Cholesky factor has very few nonzero entries and so is
much sparser.

the latter two are combined in a single step, thus, requiring only
a single refactorization. When combined with incremental up-
dates, this avoids fill-in, relearns hyperparameters to provide a
responsive model, and still yields a fast algorithm as is supported
by the results in Sections VII and VIII.

V. MATRIX DOWNDATES AND OPERATION

The complete OSMGP algorithm as described previously has
runtime complexity per data point. This is because the GP

update step (4) has runtime due to the use of Givens rota-
tions while the regression prediction (2) also has runtime
since it can be implemented using sparse back-substitution. The
mean prediction can be found by computing
as the solution to the linear system where is
the upper triangular Cholesky factor of the Gram matrix. This
linear system can be solved using two back-substitution opera-
tion. While in normal operation back-substitution is an
operation, it is for sparse matrices.

While the linear runtime complexity may be good for most
applications, in many other situations we require a constant time
scaling, at least for the prediction. Further, since the covariance
matrix in the previously shown case grows with the number
of training samples, storage requirement also increases over
time. We can get around these constraints and obtain a constant
time algorithm by introducing approximations into the current
scheme, which is exact except for the posterior projection (5).

Our approach is based upon the sliding window approach to
least squares problems [52], where old measurements are suc-
cessively discarded as new ones arrive. For the OSMGP, this im-
plies discarding an old training sample for every new one that
is provided, thus, keeping the number of samples based upon
which the GP is learned constant. We propose this “oldest first”
discarding strategy since, during online operation, it is more
likely that future test samples are similar to the latest observed
samples. However, other discarding strategies can also be ac-
commodated in the algorithm.

Maintaining the covariance matrix at a fixed size of ,
where is the window size, makes both the prediction and the
GP updates have time instead of . Further, even the
hyperparameter optimization and variable ordering can be done
in . Note that can be quite large (in the thousands) and
yet, can be done efficiently, since all the operations are carried
out on sparse matrices.

Fig. 4. Illustration of variable grouping for the downdate process. See text for
explanation.

The only operation to be described in this constant time, con-
stant space algorithm (for fixed) is the update of the GP when
discarding a training sample. Discarding a training sample in-
volves deleting a row and a column from the covariance matrix
and undoing the update (4) that is done when it is added. These
two steps are exact inverses of the steps involved in doing the
update 4 of Section III-A.

A. Removing an Arbitrary Row and Column From the Matrix

Consider the kernel matrix

(15)

where the notation is the same as in (7). We are now required to
remove the row and column from this matrix and
update its Cholesky factor

(16)

The kernel matrix after the row-removal is

(17)

and its updated Cholesky factor can be written as

(18)

where the only component that changes is . This is given by
the equation of [11]

(19)

It is clear that (19) involves nothing but a one rank update to the
submatrix again. Hence, deleting an arbitrary row can be
accomplished by a sparse rank update to the Cholesky factor.
This is as before a time operation.

B. Rank One Downdate Using Hyperbolic Rotations

The only operation to be described in this constant time, con-
stant space algorithm (for fixed) is the procedure for dis-
carding a training sample, i.e., reversing the posterior update.
Inverting the rank one update from (4), this can be done using a
rank one downdate of the covariance matrix. Assuming, without
loss of generality, that the matrix to be downdated is , the row

396 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2011

Fig. 5. Posterior mean (solid line) and error bars (gray shaded) for the sinc function experiment with 25 training points (left) and five training points (right).
Training points are denoted by crosses, and the ground truth as dashed line.

just removed is , and is the element at the intersection of
the deleted row and column in the original covariance matrix,
the downdate is given by

where , and are defined as in Fig. 4.
The rank one downdate can be performed efficiently using

Hyperbolic rotations [16], which are defined analogous to
Givens rotations. To zero out the entry, of a matrix ,
we apply the Hyperbolic rotation

(20)

to rows and , with . The parameter is chosen so that
, the entry of the matrix, becomes 0

if

if

otherwise

where and . As with the Givens rotations, we
apply hyperbolic rotations until all the elements of the rank one
matrix in question have been zeroed out. This is a linear time
operation for sparse matrices.

Hyperbolic rotations have a drawback that they can be numer-
ically unstable. However, if the initial and final matrices after the
downdate have full rank, which is the case here, instability usu-
ally does not occur. Though we have never encountered numer-
ical instability in our experiments, an unstable case can be dealt
with using more sophisticated downdate techniques, e.g., [2].

The approximate, constant time OSMGP algorithm can now
be summarized as follows. Whenever a training sample is pre-
sented, we include it and update the GP using (10)–(13) and
Section III-B. If the window size has not yet been reached, no
more work needs to be done. However, if the window size is ex-
ceeded, we then discard the oldest training sample by removing
the corresponding row and column from the Cholesky factor

of the covariance matrix, using hyperbolic rotations for down-
dating. The training sample with the least likelihood can also be
removed as suggested in [8].

VI. EXPERIMENTAL RESULTS

To illustrate the performance of the algorithm, we present two
simulated experiments. In these experiments, we assume a re-
gression model with a multidimensional input variable and a
scalar output variable with a likelihood given by

(21)

Since the likelihood is Gaussian, the online update is exact. In
all cases, we use the compact kernel of (3).

We start with a toy example of learning a sinc function
, where the input is scalar and is Gaussian

noise with . The posterior OSMGP mean and variance
are shown in Fig. 5 for two cases—one with 25 training points
and one with only five training points. The vanilla GP has a
least squared error (LSE) of 1.14 in the first case and 1.47 in the
second case over a randomly selected training set of 100 points.
The corresponding numbers for the OSMGP are 1.20 and 1.47.
Particularly, in the second case, since the five training points
are far apart, there is no loss of information due to the use of the
compact kernel.

Our second experiment uses the well-known Friedman
dataset #1 ([12]). This experiment consists of trying to learn
the function

(22)

from 10-D input, five of which are nuisance variables. is
noise sampled from the standard Gaussian distribution. Only
100 training points randomly and uniformly sampled in the
5-D unit cube are used. We tested the constant time version of
the OSMGP with downdates on this learning problem. Results
are presented in Table I for various sizes of the kernel matrix.
We only retain the last examples in this case. The results
demonstrate a smooth and graceful degradation of the result in
terms of LSE, as expected of a reasonable algorithm. The LSE
for the vanilla GP and the full OSMGP without downdates are
also shown for reference.

RANGANATHAN et al.: ONLINE SPARSE GAUSSIAN PROCESS REGRESSION AND ITS APPLICATIONS 397

TABLE I
LSE RESULTS ON FRIEDMAN DATASET #1. THE � DENOTE THE SIZE OF THE OSMGP KERNEL MATRIX FOR A ���� TIME OPERATION.

THE FULL OSMGP AND VANILLA GP ARE TRAINED WITH � � ��� TRAINING POINTS

Fig. 6. Sample output of our head pose estimation system for (yaw, pitch, roll) values in degrees of (left to right) ����������� ����� ��		�����������
��
�	��������������� �������������, and ��������
������. The cap with mounted IMU is used to collect ground truth data.

Fig. 7. Sample output of head pose estimation system for additional subjects.

We now illustrate OSMGPs using two challenging computer
vision applications, namely head pose estimation and tracking.
The accuracy of the OSMGP regression algorithms is compared
against the state of the art in both cases.

VII. HEAD POSE ESTIMATION

Information about head pose provides an important cue in
human interaction that people routinely estimate and use effort-
lessly. Our motivation for studying head pose estimation is to
enable more natural interaction between humans and machines.
Following a person’s viewpoint provides machines with valu-
able contextual information and also enables faster reaction to
user actions such as pointing. However, automatic estimation of
head pose from visual data has proven to be a difficult problem.
This is due to the difficulty in dealing with wide variations of
pose angle and also with generalizing the estimation algorithm
across face images of different identities. Finally, all this has to
be performed in real-time to keep up with the speed of human
head motion.

Fig. 8. Time per online update step for 15 000 steps comparing the OGP algo-
rithm with the OSMGP. Time in seconds is shown on a log scale. Optimization
is performed every 1000th step in the OSMGP which accounts for the spikes in
time.

A. Prior Work

Head pose or gaze provides crucial cues for nonverbal com-
munication that humans use, either implicitly or explicitly, to
suggest focus of attention, approval, emotion and affection. The

398 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2011

TABLE II
COMPARISON OF OVERALL POSE ESTIMATION ACCURACY FOR VARIOUS REGRESSION ALGORITHMS ON THE 15 000 POINT TEST SET. COLUMNS 2 AND 3 SHOW

THE ERROR FOR CASES WHEN THE TEST SUBJECT IS INCLUDED AND EXCLUDED IN THE TRAINING SET, RESPECTIVELY. THE FIRST NUMBER IN EACH ENTRY IS

THE MEAN YAW ERROR WHILE THE SECOND IS MEAN PITCH ERROR. MEAN ROLL ERROR OBTAINED FROM THE TRACKER IS 5.88 . THE LAST THREE ROWS

TABULATE THE RESULTS FROM THE OSMGP ALGORITHM WHEN USED WITH DIFFERENT DIMENSIONAL REDUCTION TECHNIQUES

Fig. 9. Some incorrect results from our system. The first two are due to extreme values of roll, the next two are due to tracking error, the last one is an instance of
generalization error.

last decade has witnessed an increasing interest in developing
robust head pose estimation modules for, among others, intel-
ligence user interface between man and machine [9], [6], [34],
[13] human-robot interaction [29], inferring focus of human at-
tention [43], [28], eye gaze [30], [53], facial expression recogni-
tion [51], and driver assistance for intelligent vehicles and face
recognition [1], [35], [18], [41].

Numerous head pose estimation systems have been proposed
in the past decade, ranging from methods based upon prototype
matching [1], [32], 3-D model [22], [20], [25], [50], feature or
face tracking [3], [9], [22], [21], [48], [25], stereo cameras [20],
[14], [50], [29], range sensors [15], [4], classifiers [35], [39],
[7], [27], [49], [17] to regressors [27], [43], [33], [17]. The main
constraints of existing techniques are that they either deal with
a limited range of angles or provide only coarse estimation [5],
[31]. In addition, most algorithms focus on estimating head pose
from cropped face images without addressing the critical issues
of robust visual tracking modules.

Regressors have been employed to learn mapping functions
between input images and pose angles [43], [33], [17]. The
main advantage of this approach is its ability to estimate head
pose in a continuous pose space (i.e., in roll, pitch, and yaw de-
grees). However, existing algorithms are trained offline with a
set of training examples without exploiting the abundance of
data available online. More importantly, the learned regressors
are trained to generalize over a large set of training examples
without adapting itself to better estimate the head pose of a spe-
cific user.

While existing methods are able to estimate head pose in var-
ious applications, it remains a challenging problem to develop

real-time, robust modules that are able to precisely estimate
head orientations with monocular cameras. An ideal robust head
pose estimation system should be able to detect and track faces,
recover from tracking failure, estimate head pose in a contin-
uous pose space (i.e., in roll, pitch, and yaw degrees), operate
within a wide working range (i.e., users can move freely in the
scene), exploit the online data and adapt the estimation module,
and perform with one monocular camera.

We apply the proposed OSMGP algorithm to the pose es-
timation problem. In contrast to prior work that operates in a
constrained domain with limited pose angles, our system is able
to estimate head pose when humans are at a distance from the
cameras (within 9 feet range) with wide operating range (
to 60 in yaw angle, to 40 in pitch angle, and to
35 in roll angle). The proposed system is facilitated with a ro-
bust head tracking module that is able to detect and follow faces
using one monocular camera.

B. System Description

Our OSMGP-based head pose estimation system is fully au-
tomatic and incorporates face detection, tracking, and head pose
estimation. Face detection is performed using a cascade detector
[46], while tracking is performed using an incremental visual
tracker [38]. The tracked face image is used as input to the GP
regression algorithm. Histogram equalization is performed on
the tracker output to remove illumination changes to some ex-
tent. Since the roll angle of the head pose is given by the orien-
tation of the tracking window, only the yaw and pitch angles are
learned using GP regression.

RANGANATHAN et al.: ONLINE SPARSE GAUSSIAN PROCESS REGRESSION AND ITS APPLICATIONS 399

The tracker output is an image of 32 32 pixels. We ex-
periment with several dimensionality reduction techniques and
opted for principal component analysis (PCA) since it gives the
best results in conjunction with GP regression. From our experi-
ments, mixtures of probabilistic PCA tend to cluster training im-
ages by identity (rather than pose) for nonextreme poses, which
is undesirable, while clustering face images in the subspace by
the ground truth pose angles produces overlapping and inco-
herent clusters. Some dimensionality reduction techniques are
evaluated in the results.

We have gathered a large dataset of labeled training images.
This is accomplished by instrumenting subjects with a cap on
which a 3-D inertia measurement unit (IMU) is mounted. The
IMU unit used for this purpose introduces noise into the dataset
due to slippage on the heads of the subjects and due to presence
of metallic objects in the vicinity. The data set consists of 17
subjects with over 30 000 images with ground truth pose angles.
The head poses in the dataset range from to 60 in yaw,

to 40 in pitch, and to 35 in roll. We intend to make
this dataset publicly available in the near future.

Our head pose estimation system is implemented in C++ and
runs at eight frames per second. We perform frame-based pose
estimation which has the advantages of easier failure recovery
and applicability to any still image. For fair comparison with
other algorithms, we use a MATLAB implementation of the pro-
posed OSMGP algorithm and MATLAB implementations of the
online GP (OGP) [8] and the sparse pseudo-input GP (SPGP)
methods provided by the authors. In all the experiments, PCA
is used to project the face images onto a 30-D space on which
the regression functions are learned. Our system assumes that
the images are captured using a parallel frontal projection, i.e.,
the subject’s head is orthogonal to the image plane. However, a
wide variation in the head pose angles is supported. Figs. 6 and 7
shows some sample head pose estimation results.

C. Experiments

We first compare the efficiency of OSMGPs with OGP. For
this purpose, the exact OSMGP algorithm with no downdates is
used, while OGP is used with 200 basis vectors. An initial GP
model is learned offline with 5000 training points using the re-
spective algorithms. Fig. 8 shows the GP update time on a log
scale for the two algorithms for a further 15 000 online updates.
Note that once the maximum basis vector number is reached,
OGP has constant time operation, while OSMGP has a
growth. However, even after 15 000 updates, the runtime of the
exact OSMGP is still less than OGP. While OSMGP runtime in-
creases monotonically if approximations using downdating are
not performed, this shows that even when using an exceedingly
large window size, 15 000 in this case, OSMGP is still a faster al-
gorithm than OGP. Hyperparameter optimization is performed
every 1000 steps for OSMGPs which manifests itself as spikes
in the time graph. Variable reordering is not required as the ma-
trix remained sparse. No optimization is performed in the case
of OGPs. In spite of this, the average time taken by the OSMGP
per step is less than the OGP.

We compare the results of using OSMGP regression
for head pose estimation against other kernel regression

Fig. 10. Comparison of mean prediction error, pitch and yaw combined, for a
OSMGP with online learning as opposed to one with no online learning. The
mean error across the sequence is 3.07 for the model with online learning and
7.11 without.

Fig. 11. Comparison of predicted pitch for various window sizes over the same
test sequence used in Fig. 10. Ground truth obtained from the IMU is also given.
The error gracefully degrades with decreasing window size as expected.

methods including OGP, Multivariate relevance vector machine
(MVRVM) [44], and SPGP. The publicly available implemen-
tation of MVRVM is used for fair comparison. In addition,
we also evaluate the use of different dimensionality reduction
techniques in conjunction with the OSMGP, such as mixtures
of PPCA with five clusters, mixtures of PPCA clustered by
training pose with five clusters, and the Gaussian process latent
variable model (GPLVM) [26]. OSMGP and OGP are trained
online with hyperparameter estimation every 500 steps. No
downdating is done for the OSMGP, while 250 basis vectors
are used for the OGP. All the models are first learned offline
using a 5000 point dataset. A 15 000 point test set, the same
as the one used in the timing experiment shown previously, is
used to obtain pose predictions. Note that the prediction error
can be further reduced by filtering the output using the variance
provided by the GP.

The mean errors for the yaw and pitch angles are presented
in Table II. OSMGP performs better than all the other algo-
rithms. The OGP method performs slightly worse than the pro-
posed OSMGP algorithm, which is mainly due to the approxi-
mation involved with the use of basis vectors. Both SPGP and
MVRVM methods give significantly worse results due to the
lack of online learning and hyperparameter estimation. The use
of other dimensionality reduction techniques produces results

400 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2011

Fig. 12. Few examples of tracking failures caused by significant change in object appearance due to (a) motion blur, (b) lighting, and (c), (d) extreme poses of
the object.

TABLE III
COMPARISON OF TRACKING PERFORMANCE FOR DIFFERENT REGRESSION

ALGORITHMS ON THE TWO TEST SEQUENCES

that, in many cases, are quite poor. This is because the clus-
tering result is unsatisfactory in the case of mixtures of PPCA,
while the GPLVM method often clusters by identity of the face,
rather than desirably by pose.

Fig. 9 shows instances of incorrect outputs from the
OSMGP algorithm. Most of the errors arise due to one of three
causes—extreme values of roll which changes the appearance
of the face, tracking error where the tracing window is slightly
off, and finally some instances where the algorithm is unable
to generalize to particular poses of previously unseen people.
An analysis of the tracking error is performed in this context in
Section VIII but is also similarly applicable here.

A second experiment demonstrates the benefit of online
learning with hyperparameter estimation. Two OSMGP models
are trained offline using 5000 training points. Subsequently,
both models are used to predict poses for a sequence of 1340
test images. The first OSMGP is updated online by providing
the corresponding training point after each prediction, while
the second OSMGP is kept fixed. Further, the hyperparameters
of the first OSMGP are updated after every 100 steps. Variable
reordering is performed in both cases as required and no down-
dates are applied. Fig. 10 gives the results of the experiment in
the form of the error as measured from the ground truth given
by the IMU. It can be seen that although both models start by
predicting poses with the same error, the model with online
learning quickly improves and demonstrates much lower error
over the whole sequence. The mean error over yaw and pitch
for the OSMGP with online learning is 3.07 , while for the
second, fixed OSMGP, it is 7.11 , i.e., worse by more than a
factor of two.

The effect of varying the window size in the approximate,
constant time OSMGP is illustrated in Fig. 11. This shows the
predictive pitch angle for the same sequence of 1340 images as
shown previously with various window sizes ranging from 100
to 1000.

No hyperparameter estimation is done in any of the OSMGPs
in this case although online updates are performed. A window
size of 1000 produces a mean prediction error of 4.02 in the
pitch angle which is close to the value observed in the pre-
vious experiment. The ground truth, as obtained from the IMU,
is also shown in the figure for reference. The mean errors for
window sizes of 100, 250, and 500 are 7.07 , 6.59 , and 5.22 ,
respectively.

Fig. 11 also shows that most of the prediction error occurs in
cases of extreme poses, i.e., absolute yaw or pitch angles greater
than about 40 . One reason for this is that at these angles, the
visual tracker is somewhat unstable as little facial information
is available. Second, the number of training images with these
poses are also comparatively few, since people do not maintain
these positions for a significant amount of time. Correspond-
ingly, the mean errors in Table II are skewed due to these ex-
treme poses. If the pose range is constrained, prediction errors
can be reduced significantly. Further, due to the skew in training
data, the variance given by the GP predictor is much larger at
these extreme poses than that for other poses. For instance, the
maximum standard deviation of 2.59 is obtained for a predic-
tion of yaw and pitch values equal to 61.2 and 31.7 , respec-
tively. In contrast, for the corresponding angle predictions of
0.9 and 1.2 , the standard deviation has the more typical value
of 0.28 .

VIII. VISUAL TRACKING

We next illustrate the application of OSMGPs to visual
tracking in a regression-based framework. The regression-based
tracking algorithm is similar to [47] which uses relevance vector
machine (RVM), and here an OSMGP is used. As in [47], we
use “seed images,” where the location of the object of interest
is known. The object extracted from these seed images is
perturbed along the two translation axes to obtain training
images using which a regression function from the image to
the displacement is learned. Perturbed training images are
generated in a 40 pixel window along both translation axes.

Since our main goal is to demonstrate the applicability of OS-
MGPs, we do not take into account rotation and scaling in our
tracker, though these can easily be accommodated as shown in
[47]. We also do not perform any state prediction but simply up-
date the tracked region on a frame-by-frame basis.

The regression-based tracker is implemented using OSMGP,
MVRVM, and SPGP. Two publicly available datasets from
[38], namely the Fish and Sylvester datasets are used to com-
pare these algorithms. Both datasets are challenging due to

RANGANATHAN et al.: ONLINE SPARSE GAUSSIAN PROCESS REGRESSION AND ITS APPLICATIONS 401

Fig. 13. Results of the OSMGP tracker for both test datasets on approximately 500 frames of video.

Fig. 14. Comparison of the output of the trackers for a few frames of the Sylvester dataset illustrating the quality of the results.

variable illumination and large perspective changes. To create
the training sets, three seed images are chosen randomly in each
dataset and perturbed as explained previously. For purposes
of computing tracking error, ground truth is taken to be the
output of the incremental visual tracker (IVT) by Ross et al.
[38]. Initialization is done manually. The tracking error of each
frame is computed as the distance between the center of the
tracked region and the ground truth. Further, if the tracking
error of a tracker is larger than 40 pixels along any axis, the
tracker is declared to have lost track and is reinitialized using
the output of the IVT.

The OSMGP with downdating and a window size of 500 is
used. Both the MVRVM and the SPGP are learned with an active
point set of size 100, beyond which performance improvement
is negligible.

The tracking results from these experiments are presented in
Table III. The OSMGP based tracker has the least number of
tracking failures and the least mean tracking error, especially
for the fish dataset. This is because the rapidly but continuously
varying illumination makes online learning more important in
this case. This also illustrates the robustness of the OSMGP al-
gorithm to illumination change, which can also be extrapolated
to the head pose estimation system. A few instances of tracking
failure are shown in Fig. 12 to illustrate the common reasons for
this. Failures usually occur due to motion blur, large changes in
lighting, or when the object is at an extreme pose, changing its
appearance drastically.

The results of the OSMGP tracker for the two sequences is
illustrated in Fig. 13. A comparison of the output of all the
trackers for a few frames of the two sequences is shown in

402 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2011

Fig. 15. Comparison of the output of the trackers for a few frames of the Fish dataset illustrating the quality of the results.

TABLE IV
TRACKING PERFORMANCE COMPARISON FOR THE FISH DATASET USING

MANUALLY LABELED TRAINING AND TEST FRAMES. THIS DEMONSTRATES

PERFORMANCE IN THE ABSENCE OF INPUT TRACKING ERROR

Fig. 14 for the Sylvester sequence and Fig. 15 for the fish se-
quence. All the trackers run at approximately five frames per
second. The OSMGP is not significantly faster since the Gram
matrix is not as sparse as in the head pose estimation scenario.

To quantify the error due to the incremental visual tracker
(IVT) used to reinitialize the OSMGP tracker and also com-
pute its error, we manually labeled 40 frames of the Fish se-
quence and computed the tracking error by testing the algorithm
on these. Results are presented in Table IV. Comparison with
Table III shows that the error improves by 20–25%. Since the
head-pose estimation system is also dependent upon the IVT
for training input, we can extrapolate a similar improvement in
error there too with an ideal tracker.

As the perturbed images look alike in this type of tracking
algorithm, the corresponding Gram matrix entries are nonzero
and, thus, the matrix is relatively nonsparse. Consequently, their
runtime goes up as the complexity of OSMGP depends upon the
number of Givens and Hyperbolic rotations. In the head pose

estimation case, most of the Gram matrix entries are zero as
those images are obtained from different people with large pose
variation. These experiments show that even in the case where
the Gram matrix is not sparse, OSMGPs are still faster than the
existing regression algorithms and can be significantly faster in
many cases (such as head pose estimation).

IX. CONCLUDING REMARKS

In this paper, we propose a new Gaussian process algorithm,
online sparse matrix Gaussian processes, that can be used for
exact, online learning with time growth or in an approx-
imate manner with time. The algorithm is applicable to
kernels with compact support, which result in a sparse covari-
ance matrix. We demonstrated the use of the OSMGP algorithm
in the context of two applications:

• an exhaustively tested 3-D head pose estimation system
that operates in continuous angle space without any dis-
cretization, generalizes across faces of different identities,
and provides good results even for large angle variations.

• a regression-based tracker that can operate under signifi-
cant illumination and perspective changes

In principle, the idea of sparse matrix manipulations can be
extended to other probabilistic kernel machines, such as the rel-
evance vector machine. We plan to pursue this idea, and extend
the proposed algorithm to the semisupervised learning setting.

REFERENCES

[1] D. Beymer, “Face recognition under varying pose,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 1994, pp. 765–761.

RANGANATHAN et al.: ONLINE SPARSE GAUSSIAN PROCESS REGRESSION AND ITS APPLICATIONS 403

[2] A. Bjorck, H. Park, and L. Elden, “Accurate downdating of
least-squares solutions,” SIAM J. Matrix Anal. Appl., vol. 15, no.
2, pp. 549–568, 1994.

[3] M. Black and Y. Yacoob, “Tracking and recognizing rigid and non-
rigid facial motions using local parametric models of image motion,”
in Proc. IEEE Int. Conf. Comput. Vis., 1995, pp. 374–381.

[4] M. Breitenstein, D. Kuettel, T. Weise, L. van Gool, and H. Pfister,
“Real-time face pose estimation from single range images,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2008, pp. 1–8.

[5] L. Brown and Y.-L. Tian, “Comparative study of coarse head pose es-
timation,” in Proc. IEEE Workshop Motion Video Comput., 2002, pp.
125–130.

[6] , R. Cipolla and A. Pentland, Eds., Computer Vision for Human-Ma-
chine Interaction. London, U.K.: Cambridge Univ. Press, 1998.

[7] T. Cootes, K. Walker, and C. Taylor, “View-based active appearance
models,” in Proc. Int. Conf. Autom. Face Gesture Recognit., 2000, pp.
227–232.

[8] L. Csato and M. Opper, “Sparse online Gaussian processes,” Neural
Comput., vol. 14, no. 2, pp. 641–669, 2002.

[9] T. Darrell, B. Moghaddam, and A. Pentland, “Active face tracking and
pose estimation in an interactive room,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 1996, pp. 67–72.

[10] T. Davis, J. Gilbert, S. Larimore, and E. Ng, “A column approximate
minimum degree ordering algorithm,” ACM Trans. Math. Softw., vol.
30, no. 3, pp. 353–376, 2004.

[11] T. Davis and W. Hager, “Row modifications of a sparse Cholesky fac-
torization,” SIAM J. Matrix Anal. Appl., vol. 26, no. 3, pp. 621–639,
2005.

[12] J. H. Friedman, “Multivariate adaptive regression splines,” Ann.
Statist., vol. 19, no. 1, pp. 1–67, 1991.

[13] Y. Fu, R. Li, T. Huang, and M. Danielsen, “Real-time multimodal
human-avatar interaction,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 18, no. 4, pp. 467–477, Apr. 2008.

[14] S. B. Gokturk, J.-Y. Bouguet, and R. Grzeszczuk, “A data-driven
model for monocular face tracking,” in Proc. IEEE Int. Conf. Comput.
Vis., 2001, pp. 701–708.

[15] S. B. Gokturk and C. Tomasi, “3D head tracking based on recognition
and interpolation using a time-of-flight depth sensor,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2004, vol. 2, pp. 211–217.

[16] G. Golub and C. V. Loan, Matrix Computations. Baltimore, MD: The
Johns Hopkins Univ. Press, 1996.

[17] G. Guo, Y. Fu, C. Dyer, and T. Huang, “Head pose estimation: Classi-
fication or regression?,” in Proc. Int. Conf. Pattern Recognit., 2008.

[18] A. Gupta, A. Mittal, and L. Davis, “Constraint integration for efficient
multiview pose estimation with self-occlusion,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 30, no. 3, pp. 493–506, Mar. 2008.

[19] B. Hamers, J. Suykens, and B. D. Moor, “Compactly supported RBF
kernels for sparsifying the gram matrix in LS-SVM regression models,”
in Proc. Int. Conf. Artif. Neural Netw., 2002, pp. 720–726.

[20] M. Harville, A. Rahimi, T. Darrell, G. Gordon, and J. Woodfill, “3d
pose tracking with linear depth and brightness constraints,” in Proc.
IEEE Int. Conf. Comput. Vis., 1999, pp. 142–147.

[21] T. Horprasert, Y. Yacoov, and L. Davis, “Computing 3-d head orien-
tation from a monocular image sequence,” in Proc. Int. Conf. Autom.
Face Gesture Recognit., 2000, pp. 242–247.

[22] T. Jebara and A. Pentland, “Parametrized structure from motion for 3d
adaptive feedback tracking of faces,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 1997, pp. 144–150.

[23] M. Kaess, A. Ranganathan, and F. Dellaert, “Fast incremental square
root information smoothing,” in Proc. Int. Joint Conf. Artif. Intell.,
2007, pp. 2129–2134.

[24] B. Kernighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307, 1970.

[25] M. La Cascia, S. Sclaroff, and V. Athitsos, “Fast, reliable head tracking
under varying illumination: An approach based on registration of tex-
ture-mapped 3D models,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
22, no. 4, pp. 322–336, Apr. 2000.

[26] N. Lawrence, “Gaussian process latent variable models for visualiza-
tion of high dimensional data,” Adv. Neural Inf. Process. Syst., pp.
329–336, 2004.

[27] S. Li, Q. Fu, L. Gu, B. Scholkopf, Y. Cheng, and H. Zhang, “Kernel
machine based learning for multiview face detection and pose estima-
tion,” in Proc. IEEE Int. Conf. Comput. Vis., 2001, pp. 674–679.

[28] J. McCall and M. Trivedi, “Driver behavior and situation aware brake
assistance for intelligent vehicles,” Proc. IEEE, vol. 95, no. 2, pp.
374–387, Feb. 2007.

[29] L.-P. Morency, C. Sidner, C. Lee, and T. Darrell, “Head gestures for
perceptual interfaces: The role of context in improving recognition,”
Artif. Intell., vol. 171, no. 8–9, pp. 568–585, 2007.

[30] C. Morimoto, D. Koons, A. Amir, and M. Flickner, “Pupil detection
and tracking using multiple light sources,” Image Vis. Comput., vol.
18, no. 4, pp. 331–335, Mar. 2000.

[31] E. Murphy-Chutrian and M. Trivedi, “Head pose estimation in com-
puter vision: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
31, no. 4, pp. 607–626, Apr. 2009.

[32] S. Niyogi and W. Freeman, “Example-based head tracking,” in Proc.
Int. Conf. Autom. Face Gesture Recognit., 1996, pp. 374–378.

[33] R. Osadchy, M. Miller, and Y. LeCun, “Synergistic face detection and
pose estimation with energy-based models,” J. Mach. Learn. Res.,
2007.

[34] A. Pentland, “Looking at people: Sensing for ubiquitous and wearable
computing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 2, pp.
107–119, Feb. 2000.

[35] A. Pentland, B. Moghaddam, and T. Starner, “View-based and modular
eigenspaces for face recognition,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 1994, pp. 84–91.

[36] J. Quinonero-Candela, C. Rasmussen, and C. Williams, “Approx-
imation methods for Gaussian process regression,” in Large-Scale
Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste, and J. We-
ston, Eds. Cambridge, MA: MIT Press, 2007, pp. 203–224.

[37] C. E. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA: MIT Press, 2006.

[38] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for
robust visual tracking,” Int. J. Comput. Vis., vol. 1–3, pp. 125–141,
2008.

[39] H. Rowley, S. Baluja, and T. Kanade, “Rotation invariant neural net-
work-based face detection,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 1998, pp. 38–44.

[40] M. Seeger, “Bayesian Gaussian process models: PAC-Bayesian gener-
alisation error bounds and sparse approximations,” Ph.D. dissertation,
Univ. Edinburgh, Edinburgh, U.K., 2003.

[41] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and ex-
pression database,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25,
no. 12, pp. 1615–1618, Dec. 2003.

[42] E. Snelson and Z. Ghahramani, “Sparse Gaussian processes using
pseudo-inputs,” Adv. Neural Inf. Process. Syst., pp. 1259–1266,
2006.

[43] R. Stiefelhagen, J. Yang, and A. Waibel, “Modeling focus of atten-
tion for meeting indexing based on multiple cues,” IEEE Trans. Neural
Netw., vol. 13, no. 4, pp. 928–938, Jul. 2002.

[44] A. Thayananthan, R. Navaratnam, B. Stenger, P. Torr, and R. Cipolla,
“Multivariate relevance vector machines for tracking,” in Proc. Eur.
Conf. Comput. Vis., 2006, vol. 3, pp. 124–138.

[45] V. Tresp, “A Bayesian committee machine,” Neural Comput., vol. 12,
no. 11, pp. 2719–2741, 2000.

[46] P. Viola and M. Jones, “Rapid object detection using a boosted cas-
cade of simple features,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2001, vol. 1, pp. 511–518.

[47] O. Williams, A. Blake, and R. Cipolla, “Sparse Bayesian regression for
efficient visual tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
27, no. 8, pp. 1292–1304, Aug. 2005.

[48] Y. Wu and K. Toyama, “Wide-range, person-, and illumination-insen-
sitive head orientation estimation,” in Proc. Int. Conf. Autom. Face Ges-
ture Recognit., 2000, pp. 183–188.

[49] J. Xiao, S. Baker, I. Matthews, and T. Kanade, “Real-time combined
2D�3D active appearance models,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2004, pp. 535–542.

[50] R. Yang and Z. Zhang, “Model-based head pose tracking with stereo
vision,” in Proc. Int. Conf. Autom. Face Gesture Recognit., 2002, pp.
242–247.

[51] Z. Zeng, M. Pantic, G. Roisman, and T. S. Huang, “A survey of af-
fect recognition methods: Audio, visual and spontaneous expressions,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 1, pp. 39–58, Jan.
2009.

[52] K. Zhao, L. Fuyun, H. Lev-Ari, and J. Proakis, “Sliding window
order-recursive least-squares algorithms,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 42, no. 8, pp. 1961–1972, Aug.
1994.

[53] Z. Zhu and Q. Ji, “Robust real-time eye detection and tracking
under variable lighting conditions and various face orientations,”
Comput. Vis. Image Understand., vol. 98, no. 1, pp. 124–154,
2005.

404 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2011

Ananth Ranganathan received the B.Tech. degree
in computer science from the Indian Institute of Tech-
nology, Roorkee, India, in 2002, and the Ph.D. de-
gree in computer science from the College of Com-
puting, Georgia Institute of Technology, Atlanta, GA,
in 2008.

His Ph.D. thesis research was on applying
Bayesian modeling and inference techniques to
the problem of topological mapping in robotics.
Currently, he is Senior Research Scientist at the
Honda Research Institute, Mountain View, CA. His

research focuses on probabilistic methods in robotics and computer vision,
specifically for mapping and planning in robotics, and scene analysis and object
recognition in computer vision.

Ming-Hsuan Yang (S’96–M’00–SM’06) received
the Ph.D. degree in computer science from the
University of Illinois, Urbana-Champaign, IL, in
2000.

He currently is an Assistant Professor in the
Electrical Engineering and Computer Science De-
partment, University of California, Merced, CA.
He was a Senior Research scientist at the Honda
Research Institute, Mountain View, CA, working on
vision problems related to humanoid robots.

Dr. Yang received the Ray Ozzie Fellowship for
his research work in 1999. He coauthored the book “Face Detection and Ges-
ture Recognition for Human-Computer Interaction” (Kluwer Academic 2001)
and edited special issue on face recognition for Computer Vision and Image
Understanding in 2003. He served as an area chair for the IEEE Conference on
Computer Vision and Pattern Recognition in 2008 and 2009, as a publication
chair in 2010, and an area chair for the Asian Conference on Computer in 2009
and 2010. He is an associate editor of the IEEE TRANSACTIONS ON PATTERN

ANALYSIS AND MACHINE INTELLIGENCE, and Image and Vision Computing. He
is a senior member of the Association for Computing Machinery (ACM).

Jeffrey Ho received the Ph.D. degree in mathematics
and the M.S. degree in computer science, both from
the University of Illinois, Urbana-Champaign, IL, in
1999 and 2000, respectively.

He is currently an Assistant Professor in the De-
partment of Computer Information Science and En-
gineering, University of Florida, Gainesville, FL. His
current research interests include point-set and image
registration, segmentation, and visual tracking.

